A table with one row per unique genomic region (node) involved in a structural duplication.
| Column | Description |
|---|---|
id |
Unique ID for the genomic region (chr:start-end) |
gene_name |
Ensembl or Liftoff-assigned gene name overlapping this region (if a |
A table with one row per unique genomic region (node) involved in a structural duplication.
| Column | Description |
|---|---|
id |
Unique ID for the genomic region (chr:start-end) |
gene_name |
Ensembl or Liftoff-assigned gene name overlapping this region (if a |
| function addOrUpdateAgendaBarWithProgressV5() { | |
| const pres = SlidesApp.getActivePresentation(); | |
| const slides = pres.getSlides(); | |
| // 0) Clear any existing timeline shapes on ALL slides | |
| slides.forEach(slide => { | |
| slide.getPageElements().forEach(el => { | |
| const t = el.getTitle && el.getTitle(); | |
| if (t && t.startsWith('AGENDA_')) { | |
| el.remove(); |
| name: kspider | |
| channels: | |
| - conda-forge | |
| - bioconda | |
| dependencies: | |
| - python=3.9 | |
| - pip | |
| - sourmash | |
| - pip: | |
| - kSpider |
| #include <Python.h> | |
| #include <iostream> | |
| using namespace std; | |
| class toANI { | |
| public: | |
| PyObject* moduleMainString, * moduleMain, * func; | |
| toANI() { |
| import retworkx as rx | |
| from tqdm import tqdm | |
| import argparse | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--csv', type=str, required=True, help="pairwise csv file") | |
| parser.add_argument('--cutoff', type=int, required=True, | |
| help="clustering threshold (0:100)") | |
| parser.add_argument('--mode', type=str, required=True, choices=['ani', 'cont'], |
| """ | |
| Using the new NCBI's datasets API to get the nearest available reference genomes for a given taxon or organism name. | |
| Input: TAX_ID or Name | |
| Output: | |
| 1- The nearest organism with available reference genomes | |
| 2- Accessions of the reference genomes | |
| Requirements: |
| parent metadata | |
| p1 DB_A | |
| p2 DB_B | |
| p3 DB_C | |
| p4 DB_A | |
| p5 DB_A | |
| p6 DB_A | |
| p7 DB_B | |
| p8 DB_C | |
| p9 DB_C |
| # Validate kProcessor 1 index | |
| from itertools import groupby | |
| import os | |
| import kProcessor as kp | |
| import hashlib | |
| class IntegralHasher: |
| """ | |
| Input: Unitigs Fasta file generated from BCALM. | |
| Output: CSV File with the following format | |
| A. Column(1): Connected Component ID | |
| B. Column(2:): Unitigs ID(s) | |
| Run: | |
| python unitigs_to_connected_components.py <unitigs_path> | |
| """ |
| 1 | 2 | 2 | 1 | 3 | |
|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 |