Skip to content

Instantly share code, notes, and snippets.

@karpathy
Last active February 12, 2026 22:14
Show Gist options
  • Select an option

  • Save karpathy/8627fe009c40f57531cb18360106ce95 to your computer and use it in GitHub Desktop.

Select an option

Save karpathy/8627fe009c40f57531cb18360106ce95 to your computer and use it in GitHub Desktop.
microgpt
"""
The most atomic way to train and inference a GPT in pure, dependency-free Python.
This file is the complete algorithm.
Everything else is just efficiency.
@karpathy
"""
import os # os.path.exists
import math # math.log, math.exp
import random # random.seed, random.choices, random.gauss, random.shuffle
random.seed(42) # Let there be order among chaos
# Let there be an input dataset `docs`: list[str] of documents (e.g. a dataset of names)
if not os.path.exists('input.txt'):
import urllib.request
names_url = 'https://raw.githubusercontent.com/karpathy/makemore/refs/heads/master/names.txt'
urllib.request.urlretrieve(names_url, 'input.txt')
docs = [l.strip() for l in open('input.txt').read().strip().split('\n') if l.strip()] # list[str] of documents
random.shuffle(docs)
print(f"num docs: {len(docs)}")
# Let there be a Tokenizer to translate strings to discrete symbols and back
uchars = sorted(set(''.join(docs))) # unique characters in the dataset become token ids 0..n-1
BOS = len(uchars) # token id for the special Beginning of Sequence (BOS) token
vocab_size = len(uchars) + 1 # total number of unique tokens, +1 is for BOS
print(f"vocab size: {vocab_size}")
# Let there be Autograd, to recursively apply the chain rule through a computation graph
class Value:
__slots__ = ('data', 'grad', '_children', '_local_grads') # Python optimization for memory usage
def __init__(self, data, children=(), local_grads=()):
self.data = data # scalar value of this node calculated during forward pass
self.grad = 0 # derivative of the loss w.r.t. this node, calculated in backward pass
self._children = children # children of this node in the computation graph
self._local_grads = local_grads # local derivative of this node w.r.t. its children
def __add__(self, other):
other = other if isinstance(other, Value) else Value(other)
return Value(self.data + other.data, (self, other), (1, 1))
def __mul__(self, other):
other = other if isinstance(other, Value) else Value(other)
return Value(self.data * other.data, (self, other), (other.data, self.data))
def __pow__(self, other): return Value(self.data**other, (self,), (other * self.data**(other-1),))
def log(self): return Value(math.log(self.data), (self,), (1/self.data,))
def exp(self): return Value(math.exp(self.data), (self,), (math.exp(self.data),))
def relu(self): return Value(max(0, self.data), (self,), (float(self.data > 0),))
def __neg__(self): return self * -1
def __radd__(self, other): return self + other
def __sub__(self, other): return self + (-other)
def __rsub__(self, other): return other + (-self)
def __rmul__(self, other): return self * other
def __truediv__(self, other): return self * other**-1
def __rtruediv__(self, other): return other * self**-1
def backward(self):
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._children:
build_topo(child)
topo.append(v)
build_topo(self)
self.grad = 1
for v in reversed(topo):
for child, local_grad in zip(v._children, v._local_grads):
child.grad += local_grad * v.grad
# Initialize the parameters, to store the knowledge of the model.
n_embd = 16 # embedding dimension
n_head = 4 # number of attention heads
n_layer = 1 # number of layers
block_size = 16 # maximum sequence length
head_dim = n_embd // n_head # dimension of each head
matrix = lambda nout, nin, std=0.08: [[Value(random.gauss(0, std)) for _ in range(nin)] for _ in range(nout)]
state_dict = {'wte': matrix(vocab_size, n_embd), 'wpe': matrix(block_size, n_embd), 'lm_head': matrix(vocab_size, n_embd)}
for i in range(n_layer):
state_dict[f'layer{i}.attn_wq'] = matrix(n_embd, n_embd)
state_dict[f'layer{i}.attn_wk'] = matrix(n_embd, n_embd)
state_dict[f'layer{i}.attn_wv'] = matrix(n_embd, n_embd)
state_dict[f'layer{i}.attn_wo'] = matrix(n_embd, n_embd)
state_dict[f'layer{i}.mlp_fc1'] = matrix(4 * n_embd, n_embd)
state_dict[f'layer{i}.mlp_fc2'] = matrix(n_embd, 4 * n_embd)
params = [p for mat in state_dict.values() for row in mat for p in row] # flatten params into a single list[Value]
print(f"num params: {len(params)}")
# Define the model architecture: a stateless function mapping token sequence and parameters to logits over what comes next.
# Follow GPT-2, blessed among the GPTs, with minor differences: layernorm -> rmsnorm, no biases, GeLU -> ReLU
def linear(x, w):
return [sum(wi * xi for wi, xi in zip(wo, x)) for wo in w]
def softmax(logits):
max_val = max(val.data for val in logits)
exps = [(val - max_val).exp() for val in logits]
total = sum(exps)
return [e / total for e in exps]
def rmsnorm(x):
ms = sum(xi * xi for xi in x) / len(x)
scale = (ms + 1e-5) ** -0.5
return [xi * scale for xi in x]
def gpt(token_id, pos_id, keys, values):
tok_emb = state_dict['wte'][token_id] # token embedding
pos_emb = state_dict['wpe'][pos_id] # position embedding
x = [t + p for t, p in zip(tok_emb, pos_emb)] # joint token and position embedding
x = rmsnorm(x)
for li in range(n_layer):
# 1) Multi-head attention block
x_residual = x
x = rmsnorm(x)
q = linear(x, state_dict[f'layer{li}.attn_wq'])
k = linear(x, state_dict[f'layer{li}.attn_wk'])
v = linear(x, state_dict[f'layer{li}.attn_wv'])
keys[li].append(k)
values[li].append(v)
x_attn = []
for h in range(n_head):
hs = h * head_dim
q_h = q[hs:hs+head_dim]
k_h = [ki[hs:hs+head_dim] for ki in keys[li]]
v_h = [vi[hs:hs+head_dim] for vi in values[li]]
attn_logits = [sum(q_h[j] * k_h[t][j] for j in range(head_dim)) / head_dim**0.5 for t in range(len(k_h))]
attn_weights = softmax(attn_logits)
head_out = [sum(attn_weights[t] * v_h[t][j] for t in range(len(v_h))) for j in range(head_dim)]
x_attn.extend(head_out)
x = linear(x_attn, state_dict[f'layer{li}.attn_wo'])
x = [a + b for a, b in zip(x, x_residual)]
# 2) MLP block
x_residual = x
x = rmsnorm(x)
x = linear(x, state_dict[f'layer{li}.mlp_fc1'])
x = [xi.relu() for xi in x]
x = linear(x, state_dict[f'layer{li}.mlp_fc2'])
x = [a + b for a, b in zip(x, x_residual)]
logits = linear(x, state_dict['lm_head'])
return logits
# Let there be Adam, the blessed optimizer and its buffers
learning_rate, beta1, beta2, eps_adam = 0.01, 0.85, 0.99, 1e-8
m = [0.0] * len(params) # first moment buffer
v = [0.0] * len(params) # second moment buffer
# Repeat in sequence
num_steps = 1000 # number of training steps
for step in range(num_steps):
# Take single document, tokenize it, surround it with BOS special token on both sides
doc = docs[step % len(docs)]
tokens = [BOS] + [uchars.index(ch) for ch in doc] + [BOS]
n = min(block_size, len(tokens) - 1)
# Forward the token sequence through the model, building up the computation graph all the way to the loss.
keys, values = [[] for _ in range(n_layer)], [[] for _ in range(n_layer)]
losses = []
for pos_id in range(n):
token_id, target_id = tokens[pos_id], tokens[pos_id + 1]
logits = gpt(token_id, pos_id, keys, values)
probs = softmax(logits)
loss_t = -probs[target_id].log()
losses.append(loss_t)
loss = (1 / n) * sum(losses) # final average loss over the document sequence. May yours be low.
# Backward the loss, calculating the gradients with respect to all model parameters.
loss.backward()
# Adam optimizer update: update the model parameters based on the corresponding gradients.
lr_t = learning_rate * (1 - step / num_steps) # linear learning rate decay
for i, p in enumerate(params):
m[i] = beta1 * m[i] + (1 - beta1) * p.grad
v[i] = beta2 * v[i] + (1 - beta2) * p.grad ** 2
m_hat = m[i] / (1 - beta1 ** (step + 1))
v_hat = v[i] / (1 - beta2 ** (step + 1))
p.data -= lr_t * m_hat / (v_hat ** 0.5 + eps_adam)
p.grad = 0
print(f"step {step+1:4d} / {num_steps:4d} | loss {loss.data:.4f}")
# Inference: may the model babble back to us
temperature = 0.5 # in (0, 1], control the "creativity" of generated text, low to high
print("\n--- inference (new, hallucinated names) ---")
for sample_idx in range(20):
keys, values = [[] for _ in range(n_layer)], [[] for _ in range(n_layer)]
token_id = BOS
sample = []
for pos_id in range(block_size):
logits = gpt(token_id, pos_id, keys, values)
probs = softmax([l / temperature for l in logits])
token_id = random.choices(range(vocab_size), weights=[p.data for p in probs])[0]
if token_id == BOS:
break
sample.append(uchars[token_id])
print(f"sample {sample_idx+1:2d}: {''.join(sample)}")
@amineremache
Copy link

based

@tanpuekai
Copy link

tanpuekai commented Feb 12, 2026

thank you @karpathy great work.
just created an interactive web to help reading by viz the archi-code gap, with ref to the transformer paper:

https://github.com/tanpuekai/microGPT_webEdu

Screenshot 2026-02-12 at 11 03 24โ€ฏPM

@johnmacosta
Copy link

Very cool

@fenixc9
Copy link

fenixc9 commented Feb 12, 2026

Awesome

@mattgianni
Copy link

On the eighth day, he created microgpt, and it was good.

@ghubrakesh
Copy link

will there be a video lecture @karpathy just like nanogpt??
Sorry for being too greedy.

@stanlley-locke
Copy link

Im working on something VoxelPath LLM you need to check out my git hub profile or WhatsApp me +254752032884 so we can build something better

@jimezsa
Copy link

jimezsa commented Feb 12, 2026

art!

@stanlley-locke
Copy link

art!

Ai model

@akshaymarch7
Copy link

Crazy how simple this looks now. Sometimes we overcomplicate things, but theyโ€™re usually much much much simpler in reality.

If you see it clearly algorithm is often the most easiest, the actual intelligence lies in the data and compute. Wow.

What a time to be alive.

@AbrahamBisrat
Copy link

based.

@AvikantSrivastava
Copy link

This is great, very clear and easy to read

@Rogersgu
Copy link

Respect!
It's really a very micro teaching case of gpt principles!!!!

@himudigonda
Copy link

This is it! Thank you.

@XAheli
Copy link

XAheli commented Feb 12, 2026

200 lines!

@aybar
Copy link

aybar commented Feb 12, 2026

Amazing!

@bullet-ant
Copy link

This is gold!

@waleedreafee
Copy link

This is great, thank you.

@a7medelnoor
Copy link

This is amazing!

@Kuberwastaken
Copy link

HAHA so cool
Funnily, you can even minify this code to get it to run in 84 LINES !!
https://github.com/Kuberwastaken/picogpt

It's even small enough to fit inside a QR code

image

@AMIYA8597
Copy link

The depths are cool here...... But still few issue here.... The main part is optimization with monitoring way trained data..... That part is literally missing here

@firobeid
Copy link

The King Karpathy! Developed my first LM in 2020 using you RNN infamous 2015 blog. This code is a crucial addition one lesson in a quant course am developing

@BrunoSE
Copy link

BrunoSE commented Feb 12, 2026

191 lines without the docstrings :D

@kardesyazilim
Copy link

๐Ÿ™๐Ÿ‘๐ŸคŒ

@KY-Kshitij
Copy link

Faaaackkkkk

@nakht0012
Copy link

๐Ÿ™Œ๐Ÿพawesome

@vabruzzo
Copy link

Awesome stuff @karpathy ! I had Claude Code port this to 65816 Assembly code so it could run on the Super Nintendo and, it works!
SnesGPT: https://github.com/vabruzzo/snes-gpt

@enescang
Copy link

Thanks for making deep learning accessible. Truly appreciate your work! ๐Ÿ™

Built an interactive visualizer for this: https://microgpt.enescang.dev

Source: https://github.com/enescang/microgpt-visualizer

Screenshot 2026-02-13 at 00 16 26

@parkinsonjamesd-PY
Copy link

This is really outstanding. I converted it to Rust, and it runs so fast! Thank you !!

@Michele-Zhu
Copy link

GOAT

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment