Skip to content

Instantly share code, notes, and snippets.

View kardesyazilim's full-sized avatar

Kardeş Yazılım kardesyazilim

  • Kardeş Yazılım Danışmanlık,Eğitim ve Yazılım Hizmetleri
  • İstanbul,Turkey
  • 02:39 (UTC +03:00)
View GitHub Profile
@kardesyazilim
kardesyazilim / siyasi_eserler.md
Created January 30, 2026 12:25
Doğrudan Siyasi Değişime Neden Olan Eserler
Eser Yazar/Yapımcı Siyasi Etki
Silent Spring (1962) Rachel Carson Çevre bilim kurgusu olarak okunur; ABD'de DDT yasağını ve Çevre Koruma Ajansı'nın (EPA) kurulmasını tetikledi.
The Handmaid's Tale (1985) Margaret Atwood 2017'den sonra ABD'de kadın hakları protestolarında "kırmızı elbiseli kadınlar" sembolü haline geldi; Roe v. Wade tartışmalarında referans noktası oldu.
Snow Crash (1992) Neal Stephenson "Metaverse" kavramını tanıttı; 2021'de Facebook'un ismini Meta olarak değiştirmesinde doğrudan etkili oldu.
The Social Dilemma (2020) Netflix belgeseli ABD Kongresi'nde sosyal medya düzenlemesi tartışmalarında kanıt olarak gösterildi; Avrupa Birliği'nin Dijital Hizmetler Yasası'na zemin hazırladı.
@kardesyazilim
kardesyazilim / comparison_VI_vs_MCMC.md
Created January 13, 2026 12:02
Comparison: VI vs. MCMC
Feature Variational Inference (VI) Markov Chain Monte Carlo (MCMC)
Goal Find best approximation in a tractable family Generate exact samples from true posterior (asymptotically)
Accuracy Biased (approximate); underestimates uncertainty Unbiased (converges to true posterior)
Speed Fast; scales to large datasets Slow; often impractical for big data
Optimization Gradient-based; deterministic Sampling-based; stochastic
Parallelization Easily parallelizable (e.g., mini-batches) Hard to parallelize (chains are sequential)
Tuning Choose variational family ( \mathcal{Q} ) Choose proposal distribution, step size, etc.
Uncertainty quantification Can be too confident (KL(q∥p) is mode-seeking) More reliable posterior coverage
Use cases Real-time inference, VAEs, large-scale Bayesian models Small-data settings, diagnostics, gold-st
@kardesyazilim
kardesyazilim / rpa_ipa.md
Created November 20, 2025 19:57
RPA vs IPA: Karşılaştırmalı Genel Bakış
Özellik RPA IPA
Temel Özellik Kurala dayalı, tekrarlayan görevleri otomatikleştirir. Yapay zeka ile desteklenmiş, karmaşık ve değişken süreçleri yönetir.
Veri Türü Yapılandırılmış veriler (örneğin Excel, CRM veritabanları). Yapılandırılmamış veya yarı yapılandırılmış veriler (PDF, e-posta, tarama, resim).
Esneklik Sabit kurallara bağlıdır; değişikliklerde yeniden programlanır. Öğrenir, uyar ve zamanla gelişir (makine öğrenimi ile).
Kullanılan Teknolojiler Sadece RPA araçları (UIPath, Automation Anywhere, Blue Prism). RPA + AI + ML + NLP + Bilgisayarlı Görüş + Süreç Madenciliği.
Karar Verme Basit "eğer-ise" kurallarıyla sınırlıdır. Tahmine dayalı analizlerle akıllı kararlar alabilir.
İşlem Karmaşıklığı Düşük – doğrusal, basit süreçler. Yüksek – dallanmış, dinamik, çok adımlı süreçler.
Use Case Best Algorithm
General-purpose RL, good starting point PPO
High-stakes environments requiring stability PPO or TRPO
Continuous control (e.g., robotics) SAC or DDPG
Fast prototyping or simple tasks A2C
Importance of exploration and long-term planning SAC
High sample efficiency required SAC or DDPG
Feature PPO TRPO DDPG A2C (Advantage Actor-Critic) SAC (Soft Actor-Critic)
Algorithm Type On-policy On-policy Off-policy On-policy Off-policy
Core Idea Clipped surrogate objective Trust region constraint (KL divergence) Actor-Critic + Q-learning (for continuous actions) Synchronous advantage estimation Maximum entropy (exploration) + off-policy
Stability Very stable Very stable Can be unstable Stable but can be sensitive to hyperparams Very stable
Sample Efficiency Moderate Moderate High (due to replay buffer) Moderate (on-policy) High (off-policy, replay buffer)
Complexity Simple to implement Complex (requires conjugate gradient) Moderate to Complex Complex (requires conjugate gradient) Moderate to Complex
Action Space Both discrete & continuous Both discrete & continuous Continuous only Both discrete & continuous Both discrete & continuous (S
@kardesyazilim
kardesyazilim / boosting_libraries.md
Created November 1, 2025 13:33
Summary Table: Boosting Libraries
Library Strengths Weaknesses
XGBoost Highly customizable, GPU support, mature Slower than LGBM on large data
LightGBM Extremely fast, memory-efficient Less accurate with small data
CatBoost Best for categorical features, low tuning Slower training, high RAM use
@kardesyazilim
kardesyazilim / comparison_table.md
Created November 1, 2025 13:20
Comparison Table
Method Training Style Error Focus Variance Bias Typical Use Case
Bagging Parallel (independent) Reduces variance ↓↓ High-variance models (e.g., deep trees)
Boosting Sequential Reduces bias ↓↓ Weak learners; structured/tabular data
Stacking Hybrid Leverages diversity When you have diverse strong models

↓ = reduction, ↔ = little change


@kardesyazilim
kardesyazilim / pci_dss_hsm_compliance_checklist.md
Created October 13, 2025 13:09
PCI DSS + HSM Compliance Checklist
# Requirement Verified? (Y/N) Notes
1 HSM is FIPS 140-2 Level 3 (or FIPS 140-3 Level 3) validated Check NIST CMVP list
2 Cryptographic keys for CHD never exist outside HSM in plaintext Confirm via architecture review
3 All key management (generation, storage, rotation, destruction) occurs within HSM
4 HSM access is restricted via strong authentication (MFA recommended) PCI DSS Req 8
5 Role separation enforced (e.g., SO vs. Crypto User vs. Auditor) PCI DSS Req 7
6 All HSM operations logged; logs sent to SIEM PCI DSS Req 10
7 HSM physically secured (if on-prem) or in compliant cloud environment PCI DSS Req 9
8 HSM firmware/software kept up to date PCI DSS Req 6
@kardesyazilim
kardesyazilim / essential_hsm_selection_criteria_for_pci_dss.md
Created October 13, 2025 12:49
Essential HSM Selection Criteria for PCI DSS
Criteria Requirement Why It Matters
FIPS 140-2/3 Validation Must be FIPS 140-2 Level 3 (or FIPS 140-3 Level 3) validated Required by PCI PIN and P2PE; strongly recommended for general PCI DSS key protection
Tamper Resistance Physical and logical tamper detection/response (e.g., zeroization on breach) Prevents key extraction if device is compromised
Secure Key Storage Keys never leave HSM in plaintext; all crypto operations inside HSM Meets PCI DSS Req 3.5–3.7
High Availability & Scalability Clustering, load balancing, failover support Ensures uptime for payment systems
APIs & Integration Supports PKCS#11, Java JCA/JCE, Microsoft CNG, REST (for cloud) Enables integration with apps, databases, payment switches
Audit Logging Immutable, time-stamped logs of all operations Supports PCI DSS Req 10 (logging & monitoring)
Role-Based Access Control (RBAC) Separation of duties (e.g.,
@kardesyazilim
kardesyazilim / hsm_pci_dss_iso_ies_27001.md
Created October 13, 2025 12:37
How They Work Together
Aspect HSM PCI DSS ISO/IEC 27001
Nature Technical security device Mandatory compliance standard Voluntary management system standard
Focus Cryptographic key protection Protection of cardholder data Holistic information security
Role of HSM Core technology Enabler for key requirements Risk treatment option
Certification FIPS 140-2/3 validation Annual assessment (SAQ or ROC) Third-party certification (optional)