| Eser | Yazar/Yapımcı | Siyasi Etki |
|---|---|---|
| Silent Spring (1962) | Rachel Carson | Çevre bilim kurgusu olarak okunur; ABD'de DDT yasağını ve Çevre Koruma Ajansı'nın (EPA) kurulmasını tetikledi. |
| The Handmaid's Tale (1985) | Margaret Atwood | 2017'den sonra ABD'de kadın hakları protestolarında "kırmızı elbiseli kadınlar" sembolü haline geldi; Roe v. Wade tartışmalarında referans noktası oldu. |
| Snow Crash (1992) | Neal Stephenson | "Metaverse" kavramını tanıttı; 2021'de Facebook'un ismini Meta olarak değiştirmesinde doğrudan etkili oldu. |
| The Social Dilemma (2020) | Netflix belgeseli | ABD Kongresi'nde sosyal medya düzenlemesi tartışmalarında kanıt olarak gösterildi; Avrupa Birliği'nin Dijital Hizmetler Yasası'na zemin hazırladı. |
| Feature | Variational Inference (VI) | Markov Chain Monte Carlo (MCMC) |
|---|---|---|
| Goal | Find best approximation in a tractable family | Generate exact samples from true posterior (asymptotically) |
| Accuracy | Biased (approximate); underestimates uncertainty | Unbiased (converges to true posterior) |
| Speed | Fast; scales to large datasets | Slow; often impractical for big data |
| Optimization | Gradient-based; deterministic | Sampling-based; stochastic |
| Parallelization | Easily parallelizable (e.g., mini-batches) | Hard to parallelize (chains are sequential) |
| Tuning | Choose variational family ( \mathcal{Q} ) | Choose proposal distribution, step size, etc. |
| Uncertainty quantification | Can be too confident (KL(q∥p) is mode-seeking) | More reliable posterior coverage |
| Use cases | Real-time inference, VAEs, large-scale Bayesian models | Small-data settings, diagnostics, gold-st |
| Özellik | RPA | IPA |
|---|---|---|
| Temel Özellik | Kurala dayalı, tekrarlayan görevleri otomatikleştirir. | Yapay zeka ile desteklenmiş, karmaşık ve değişken süreçleri yönetir. |
| Veri Türü | Yapılandırılmış veriler (örneğin Excel, CRM veritabanları). | Yapılandırılmamış veya yarı yapılandırılmış veriler (PDF, e-posta, tarama, resim). |
| Esneklik | Sabit kurallara bağlıdır; değişikliklerde yeniden programlanır. | Öğrenir, uyar ve zamanla gelişir (makine öğrenimi ile). |
| Kullanılan Teknolojiler | Sadece RPA araçları (UIPath, Automation Anywhere, Blue Prism). | RPA + AI + ML + NLP + Bilgisayarlı Görüş + Süreç Madenciliği. |
| Karar Verme | Basit "eğer-ise" kurallarıyla sınırlıdır. | Tahmine dayalı analizlerle akıllı kararlar alabilir. |
| İşlem Karmaşıklığı | Düşük – doğrusal, basit süreçler. | Yüksek – dallanmış, dinamik, çok adımlı süreçler. |
| Use Case | Best Algorithm |
|---|---|
| General-purpose RL, good starting point | PPO |
| High-stakes environments requiring stability | PPO or TRPO |
| Continuous control (e.g., robotics) | SAC or DDPG |
| Fast prototyping or simple tasks | A2C |
| Importance of exploration and long-term planning | SAC |
| High sample efficiency required | SAC or DDPG |
| Feature | PPO | TRPO | DDPG | A2C (Advantage Actor-Critic) | SAC (Soft Actor-Critic) |
|---|---|---|---|---|---|
| Algorithm Type | On-policy | On-policy | Off-policy | On-policy | Off-policy |
| Core Idea | Clipped surrogate objective | Trust region constraint (KL divergence) | Actor-Critic + Q-learning (for continuous actions) | Synchronous advantage estimation | Maximum entropy (exploration) + off-policy |
| Stability | Very stable | Very stable | Can be unstable | Stable but can be sensitive to hyperparams | Very stable |
| Sample Efficiency | Moderate | Moderate | High (due to replay buffer) | Moderate (on-policy) | High (off-policy, replay buffer) |
| Complexity | Simple to implement | Complex (requires conjugate gradient) | Moderate to Complex | Complex (requires conjugate gradient) | Moderate to Complex |
| Action Space | Both discrete & continuous | Both discrete & continuous | Continuous only | Both discrete & continuous | Both discrete & continuous (S |
| Library | Strengths | Weaknesses |
|---|---|---|
| XGBoost | Highly customizable, GPU support, mature | Slower than LGBM on large data |
| LightGBM | Extremely fast, memory-efficient | Less accurate with small data |
| CatBoost | Best for categorical features, low tuning | Slower training, high RAM use |
| Method | Training Style | Error Focus | Variance | Bias | Typical Use Case |
|---|---|---|---|---|---|
| Bagging | Parallel (independent) | Reduces variance | ↓↓ | ↔ | High-variance models (e.g., deep trees) |
| Boosting | Sequential | Reduces bias | ↓ | ↓↓ | Weak learners; structured/tabular data |
| Stacking | Hybrid | Leverages diversity | ↓ | ↓ | When you have diverse strong models |
↓ = reduction, ↔ = little change
| # | Requirement | Verified? (Y/N) | Notes |
|---|---|---|---|
| 1 | HSM is FIPS 140-2 Level 3 (or FIPS 140-3 Level 3) validated | Check NIST CMVP list | |
| 2 | Cryptographic keys for CHD never exist outside HSM in plaintext | Confirm via architecture review | |
| 3 | All key management (generation, storage, rotation, destruction) occurs within HSM | ||
| 4 | HSM access is restricted via strong authentication (MFA recommended) | PCI DSS Req 8 | |
| 5 | Role separation enforced (e.g., SO vs. Crypto User vs. Auditor) | PCI DSS Req 7 | |
| 6 | All HSM operations logged; logs sent to SIEM | PCI DSS Req 10 | |
| 7 | HSM physically secured (if on-prem) or in compliant cloud environment | PCI DSS Req 9 | |
| 8 | HSM firmware/software kept up to date | PCI DSS Req 6 |
| Criteria | Requirement | Why It Matters |
|---|---|---|
| FIPS 140-2/3 Validation | Must be FIPS 140-2 Level 3 (or FIPS 140-3 Level 3) validated | Required by PCI PIN and P2PE; strongly recommended for general PCI DSS key protection |
| Tamper Resistance | Physical and logical tamper detection/response (e.g., zeroization on breach) | Prevents key extraction if device is compromised |
| Secure Key Storage | Keys never leave HSM in plaintext; all crypto operations inside HSM | Meets PCI DSS Req 3.5–3.7 |
| High Availability & Scalability | Clustering, load balancing, failover support | Ensures uptime for payment systems |
| APIs & Integration | Supports PKCS#11, Java JCA/JCE, Microsoft CNG, REST (for cloud) | Enables integration with apps, databases, payment switches |
| Audit Logging | Immutable, time-stamped logs of all operations | Supports PCI DSS Req 10 (logging & monitoring) |
| Role-Based Access Control (RBAC) | Separation of duties (e.g., |
| Aspect | HSM | PCI DSS | ISO/IEC 27001 |
|---|---|---|---|
| Nature | Technical security device | Mandatory compliance standard | Voluntary management system standard |
| Focus | Cryptographic key protection | Protection of cardholder data | Holistic information security |
| Role of HSM | Core technology | Enabler for key requirements | Risk treatment option |
| Certification | FIPS 140-2/3 validation | Annual assessment (SAQ or ROC) | Third-party certification (optional) |
NewerOlder