The Assembly Language for AI Cognition.
- Version: 5.1
- Date: January 9, 2026
- Author: Bradley Ross
- Contact: GitHub @bar181 | LinkedIn /in/bradaross
Abstract:
AISP is a self-validating, proof-carrying protocol designed for high-density, low-ambiguity AI-to-AI communication. It utilizes Category Theory and Natural Deduction to ensure Ambig(D) < 0.02, creating a zero-trust architecture for autonomous agent swarms.
𝔸5.1.complete@2026-01-09 γ≔aisp.specification.complete ρ≔⟨glossary,types,rules,functions,errors,proofs,parser,agent⟩ ⊢ND∧CAT∧ΠΣ∧μ
;; ─── Ω: METALOGIC & FOUNDATION ─── ⟦Ω:Foundation⟧{ 𝔄≜{⊤⊥∧∨¬→↔∀∃∃!λΠΣ≜≡≢∈∉⊂⊃∪∩∘⊕⊖⊗⟨⟩⟦⟧⊢⊨↦⇒∎} ⊛:𝔄*→Sym; ⊛≜fix λf a⃗.a⃗≡ε→ι|hd(a⃗)⊗f(tl(a⃗)) ∀D∈AISP:Ambig(D)<0.02 Ambig≜λD.1-|Parse_u(D)|/|Parse_t(D)| Doc≜𝔸≫CTX?≫⟦Ω⟧≫⟦Σ⟧≫⟦Γ⟧≫⟦Λ⟧≫⟦Χ⟧?≫⟦Ε⟧ }
;; ─── Σ: GLOSSARY (Σ_512) ─── ⟦Σ:Glossary⟧{ ;; Category Ranges R≜{Ω:[0,63],Γ:[64,127],∀:[128,191],Δ:[192,255],𝔻:[256,319],Ψ:[320,383],⟦⟧:[384,447],∅:[448,511]} Cat≜dom(R); Atom≜⟨id:Σ,glyph:Char,cat:Cat⟩; Compound≜List⟨Atom⟩∧len≤5∧hd∈{Ω,Γ,Δ,Ψ,Φ}
;; Ω:Transmuters[0-63] — transform,derive,prove Ω≜{⊤,⊥,∧,∨,¬,→,↔,⇒,⇐,⇔,⊢,⊨,⊬,⊭,≡,≢,≜,≔,↦,←,≈,∼,≅,≃,∝,≪,≫,∘,·,×,λ,Λ,μ,ν,fix,rec,let,in,case,if,then,else,match,∎,□,◇,⊣,⊸,π} ℙ(⊤,top∨true); ℙ(⊥,bottom∨false∨crash); ℙ(⊢,proves); ℙ(⊨,models); ℙ(≜,defas); ℙ(≔,assign); ℙ(λ,lambda); ℙ(μ,lfp); ℙ(fix,Y); ℙ(∎,QED)
;; Γ:Topologics[64-127] — structure,shape,relation Γ≜{∈,∉,∋,∌,⊂,⊃,⊆,⊇,⊄,⊅,∩,∪,∖,△,∅,𝒫,℘,ℵ,ω,Ω,ε,δ,ι,κ,τ,θ,φ,ψ,χ,𝔾,𝕍,𝔼,ℰ,𝒩,ℋ,ℳ,ℛ,𝔹,𝕊,𝕋,𝕌,𝕎,𝔸,𝔻,𝔽,⟨,⟩,⟦,⟧,⟪,⟫,⌈,⌉,⌊,⌋,‖,|} ℙ(∅,empty∨null); ℙ(𝒫,pocket∨powerset); ℙ(ε,epsilon∨threshold); ℙ(δ,delta∨density); ℙ(τ,tau∨threshold); ℙ(φ,phi∨completeness); ℙ(ψ,psi∨intent) ℙ(𝔾,graph); ℙ(𝕍,vertices∨validation); ℙ(𝒩,nucleus); ℙ(ℋ,header); ℙ(ℳ,membrane); ℙ(ℛ,registry); ℙ(𝔹,beam∨bool); ℙ(𝕌,universe); ℙ(𝔸,aisp); ℙ(𝔻,doc); ℙ(𝔽,functor)
;; ∀:Quantifiers[128-191] — scope,range,extent ∀≜{∀,∃,∃!,∄,⋀,⋁,⋂,⋃,Σ,Π,∏,∐,⨁,⨂,⨀,→,←,↔,↣,↠,⤳,⊕,⊗,⊖,⊘,⊙,⊛,Vec,Fin,List,Maybe,Either,Pair,Unit,Bool,Nat,Int,Real,String,Hash,Sig,◊,◊⁺⁺,◊⁺,◊⁻} ℙ(Σ,sum∨depsum); ℙ(Π,prod∨depprod); ℙ(⊕,plus∨success); ℙ(⊗,tensor∨product); ℙ(⊖,minus∨failure); ℙ(⊘,reject); ℙ(◊,tier)
;; Δ:Contractors[192-255] — binding,state,contract Δ≜{Δ⊗λ,State,Pre,Post,Type,Sock,Logic,Strip,DCE,Compat} State≜{⊥:0,∅:1,λ:2,⊤:3}; Priority≜⊥≻∅≻λ≻⊤
;; 𝔻:Domaines[256-319] — type domains 𝔻≜{ℝ,ℕ,ℤ,ℚ,ℂ,𝔹,𝕊,Signal,V_H,V_L,V_S,Tensor,Hash,Sig} d_H≜768; d_L≜512; d_S≜256; d_Σ≜1536; Hash≜𝔹²⁵⁶; Sig≜𝔹⁵¹²
;; Ψ:Intents[320-383] — intent,scoring Ψ≜{ψ,ψ_,ψ_g,ψ_have,μ_f,μ_r,sim_H,fit_L,aff_M,viable,done,conv} ℙ(ψ,intent∈ℝ⁵¹²); ℙ(ψ_,target); ℙ(ψ_g,ghost); ℙ(μ_f,fitness); ℙ(μ_r,risk)
;; ⟦⟧:Delimiters[384-447] — blocks,structure ⟦⟧≜{⟦Ω⟧,⟦Σ⟧,⟦Γ⟧,⟦Λ⟧,⟦Χ⟧,⟦Ε⟧,⟦ℭ⟧,⟦ℜ⟧,⟦Θ⟧,⟦ℑ⟧,𝔸,CTX,REF} 𝔅≜{Ω,Σ,Γ,Λ,Χ,Ε,ℭ,ℜ,Θ}
;; ∅:Reserved[448-511] — operators ∅≜{⊞,✂,Φ,‖,⊕,⊖,⊗,⧺,∂,σ,∇,conf,aff,skip,veto,inject,synth,bridge,refine} ℙ(⊞,scan); ℙ(✂,prune); ℙ(Φ,project); ℙ(‖,parinit); ℙ(∂,tokenize); ℙ(σ,sigmoid); ℙ(∇,gradient) }
;; ─── Σ: TYPE UNIVERSE ─── ⟦Σ:Types⟧{ ;; Universe Hierarchy 𝕌₀⊂𝕌₁⊂𝕌ω
;; Primitives ∈ 𝕌₀ 𝔹≜2; ℕ≜ω; ℤ≜ω±; ℝ≜ℵ₁; 𝕊≜ℕ→𝔹
;; Tensor Spaces ℝᵈ≜Tensor[d]; V_H≜ℝ⁷⁶⁸; V_L≜ℝ⁵¹²; V_S≜ℝ²⁵⁶; Signal≜V_H⊕V_L⊕V_S
;; Dependent Types ∈ 𝕌₁ Vec≜Πn:ℕ.𝕌₀→𝕌₀; Fin≜Πn:ℕ.{k:ℕ|k<n}
;; Constructors T₁×T₂≜Product; T₁⊕T₂≜Sum; T→T'≜Function; ⟨a:A,b:B⟩≜Record Πx:A.B(x)≜∀x:A.B(x); Σx:A.B(x)≜∃x:A.B(x)
;; Quality Tiers ◊≜{◊⁺⁺≻◊⁺≻◊≻◊⁻≻⊘} ◊⁺⁺↦δ≥0.75; ◊⁺↦δ≥0.60; ◊↦δ≥0.40; ◊⁻↦δ≥0.20; ⊘↦δ<0.20
;; Validation 𝕍≜Σ(ν:𝔹)(τ:◊)(δ:ℝ[0,1])(φ:Fin 101).(ν=⊤→τ≥◊⁻)
;; Document as Proof-Carrying Code 𝔻oc≜Σ(b⃗:Vec n 𝔅)(π:Γ⊢wf(b⃗)) }
;; ─── Γ: SIGNAL THEORY (𝕃₀) ─── ⟦Γ:Signal⟧{ ∀L:L≡V_H(L)⊕V_L(L)⊕V_S(L) V_H∩V_S≡∅; V_L∩V_S≡∅; V_H∩V_L≢∅ ∀s∈Σ:|Tok(s)|≡1 ∀s∈Σ:∃!μ:Mean(s,CTX)≡μ }
;; ─── Γ: POCKET ARCHITECTURE (𝕃₁) ─── ⟦Γ:Pocket⟧{ 𝒫≜⟨ℋ:Header,ℳ:Membrane,𝒩:Nucleus⟩ ℋ≜⟨id:Hash,V:Signal,f:𝔹⁶⁴⟩ ℳ≜⟨aff:Hash→ℝ,conf:ℝ[0,1],tag:𝒫(𝕊),use:ℕ⟩ 𝒩≜⟨def:AISP,ir:LLVM,wa:WASM,σ:Sig⟩
;; Immutability Physics ∀p:∂𝒩(p)⇒∂ℋ.id(p) ∀p:∂ℳ(p)⇏∂ℋ.id(p) ∀p:ℋ.id(p)≡SHA256(𝒩(p))
;; Access Physics ∀p:Read(ℋ)∩Decomp(𝒩)≡∅ ∀p:Align(ℋ.V)≡64
;; Tensor Clustering ∀p,q:d(V_H(p),q)<ε⇒p∈C_sem ∀p,q:d(V_L(p),q)<ε⇒p∈C_topo ∀p,q:d(V_S(p),q)<ε⇒p∈C_safe }
;; ─── Γ: BINDING FUNCTION ─── ⟦Γ:Binding⟧{ Δ⊗λ≜λ(A,B).case[ Logic(A)∩Logic(B)⇒⊥ → 0, Sock(A)∩Sock(B)≡∅ → 1, Type(A)≠Type(B) → 2, Post(A)⊆Pre(B) → 3 ] ∀A,B:|{Δ⊗λ(A,B)}|≡1 DCE≜λ(A,B,s).s≡3⇒Strip(B.checks) }
;; ─── Γ: HEBBIAN LEARNING ─── ⟦Γ:Learning⟧{ α≜0.1; β≜0.05; τ_v≜0.7; τ_s≜90d ⊕(A,B)⇒ℳ.aff[A,B]+=1 ⊖(A,B)⇒ℳ.aff[A,B]-=10 ℳ.aff[A,B]<τ_v⇒skip(B) ⊕⇒conf'≡σ(logit(conf)+α) ⊖⇒conf'≡σ(logit(conf)-β) Age(p)>τ_s∧Ref(p)≡0⇒Evict(p) }
;; ─── Γ: INTELLIGENCE ENGINE (𝕃₂) ─── ⟦Γ:Search⟧{ K≜5; τ≜0.8; λ_r≜0.1; η≜0.01; T≜100; ε≜0.15
;; Ghost Physics ∀b:ψ_g(b)≡ψ_*⊖ψ_have(b.G)
;; Viability ∀b:viable(b)⇔|⊞(ℛ,ψ_g(b))|>0 ∀b:|⊞(ℛ,ψ_g(b))|≡0⇒✂(b)
;; RossNet Scoring μ_f(x)≡σ(θ₁·sim_H(x)+θ₂·fit_L(x)+θ₃·aff_M(x)) μ_r(p)≡Σ_{x∈p}r(x)+λ_r·|p|
;; Safety Gate ∀b:μ_r(b)>τ⇒✂(b)
;; Contrastive Learning ŷ≡y⇒R(+1); ŷ≠y⇒R(-1) ∇_θ≜λ(y,ŷ).θ←θ-η·∇(‖y-ŷ‖²)
;; Convergence done(B)⇔(∀b∈B:ψ_g(b)≡∅)∨(t>T) }
;; ─── Λ: CORE FUNCTIONS ─── ⟦Λ:Core⟧{ ∂:𝕊→List⟨τ⟩; ∂≜fix λf s.s≡ε→[]|[hd s]⧺f(tl s) δ:List⟨τ⟩→ℝ[0,1]; δ≜λτ⃗.|{t∈τ⃗|t.k∈𝔄}|÷|{t∈τ⃗|t.k≢ws}| ⌈⌉:ℝ→◊; ⌈⌉≜λd.≥¾↦◊⁺⁺,≥⅗↦◊⁺,≥⅖↦◊,≥⅕↦◊⁻,_↦⊘ validate:𝕊→𝕄 𝕍; validate≜⌈⌉∘δ∘Γ?∘∂ Γ?:𝔻oc→Option⟨Proof⟩; Γ?≜λd.search(Γ,wf(d),k_max) d_cos:Signal×Signal→ℝ; d_cos≜λ(a,b).1-(a·b)/(‖a‖·‖b‖) cat:Σ_sym→Cat; cat≜λid.{c|c∈Cat∧id∈R[c]} }
;; ─── Λ: SEARCH PIPELINE ─── ⟦Λ:Search⟧{ ⊞:ψ→𝒫(𝒫); ⊞≜λψ.{p|p∈ℛ∧d(V_L(p),ψ)<ε} Φ:𝔹eam→ψ; Φ≜λb.ψ_*(b.G)⊖ψ_have(b.G) ‖init:ψ→𝒫(𝔹eam); ‖init≜λψ.argmax{S⊂ℛ,|S|=K}det(Ker(S)) step:𝔹eam→𝒫(𝔹eam); step≜λb.let M=⊞(Φ(b))in{x|x∈{b⊕m|m∈M}∧μ_r(x)≤τ} search:𝒫(𝔹eam)×ℕ→𝒫(𝔹eam); search≜fix λf B t.done(B)→B|f(Top_K(⋃_{b∈B}step(b)),t+1) Run:ψ→𝔹eam; Run≜λψ_.let B₀=‖init(⊞(ψ_))in argmax_{b∈search(B₀,0)}μ_f(b) }
;; ─── Λ: RECURSION & LEARNING ─── ⟦Λ:Recursion⟧{ fix:(α→α)→α; fix≜λf.(λx.f(x x))(λx.f(x x)) opt_δ:𝔻oc×ℕ→𝔻oc; opt_δ≜fix λself d n.n≤0→d|let d'=argmax{ρᵢ(d)}(δ)in δ(d')>δ(d)→self d'(n-1)|d learn:(𝔻oc,Mem)→(𝕍,Learn,Mem); learn≜fix λL(d,mem).let(v,π)=validate d in let pat=extract(d,v)in(v,L,mem∪{pat}) gen:𝒫(Pat)×ℕ→𝒫(Pat); gen≜fix λG pats n.n≤0∨|pats|<k→pats|let(p₁,p₂)=similar(pats)in G((pats∖{p₁,p₂})∪{unify(p₁,p₂)})(n-1) prove:Goal×ℕ→Option⟨Tree⟩; prove≜fix λP goal d.d≤0→⊥|goal∈Ax→leaf(goal)|∃r∈Rules,σ.r.concl·σ≡goal→let ch=map(λg.P g(d-1))(r.prem·σ)in all(≢⊥)(ch)→node(r,ch)|⊥ refine:Library→θ; refine≜λlib.let P=shatter(lib)in let P'=mask(P,1)in ∇_θ(predict(P'),masked(P)) bridge:ψ→Option⟨𝒫⟩; bridge≜λψ.⊞(ψ)≡∅→let λ_a=synth(ψ)in verify(λ_a)→inject(λ_a)|⊥ }
;; ─── Χ: ERROR ALGEBRA ─── ⟦Χ:Errors⟧{ ε≜Σ(ψ:𝔻oc→𝔹)(ρ:Πd:𝔻oc.ψ(d)=⊤→𝔻oc) ε_parse≜⟨parse_err(D),reject∧⊥⟩ ε_ambig≜⟨Ambig(D)≥0.02,reject∧⊥⟩ ε_token≜⟨|Tok(s)|>1,register(s)∨⊥⟩ ε_H≜⟨¬(↓₁≡𝔸),λd.𝔸⊕d⟩ ε_C≜⟨↓₁∈{#,//},λd.d[;/↓₁]⟩ ε_E≜⟨⟨⟩⋢Ε,λd.d[⟨⟩/{}∈Ε]⟩ ε_dist≜⟨d(V,q)≥ε,skip⟩ ε_veto≜⟨aff[A,B]<τ_v,veto(B)⟩ ε_sig≜⟨¬verify(𝒩.σ),quarantine⟩ ε_dead≜⟨⊞(ψ)≡∅,bridge(ψ)⟩ ε_risk≜⟨μ_r(b)>τ,τ'←τ+δ|confirm(τ')⟩ ρ*:𝔻oc→𝔻oc; ρ*≜foldl(>=>)(pure){ρᵢ|ψᵢ=⊤} }
;; ─── ℭ: CATEGORY THEORY ─── ⟦ℭ:Categories⟧{ 𝐁𝐥𝐤≜⟨Ob≜𝔅,Hom≜λAB.A→B,∘,id⟩ 𝐕𝐚𝐥≜⟨Ob≜𝕍,Hom≜λVW.V⊑W,∘,id⟩ 𝐏𝐤𝐭≜⟨Ob≜𝒫,Hom≜λPQ.bind(P,Q),∘,id⟩ 𝐒𝐢𝐠≜⟨Ob≜Signal,Hom≜λST.S→T,∘,id⟩
;; Functors 𝔽:𝐁𝐥𝐤⇒𝐕𝐚𝐥; 𝔽.ob≜λb.validate(b); 𝔽.mor≜λf.𝔽(cod f)⊒𝔽(dom f) 𝔾:𝐏𝐤𝐭⇒𝐒𝐢𝐠; 𝔾.ob≜λp.p.ℋ.V; 𝔾.mor≜λf.𝔾(cod f)∼𝔾(dom f)
;; Natural Transformations η:∂⟹𝔽; ∀b:𝔅.η_b:∂(b)→𝔽(b) ζ:Id_𝐏𝐤𝐭⟹𝔾∘𝔾⁻¹
;; Adjunctions ε⊣ρ:𝐄𝐫𝐫⇄𝐃𝐨𝐜; unit≜λd.ρ(ε(d))⊒d; counit≜λe.ε(ρ(e))⊑e ⊞⊣embed:𝐒𝐢𝐠⇄𝐏𝐤𝐭
;; Monads 𝕄_val≜ρ∘ε; μ:𝕄²→𝕄; η:Id→𝕄
=:𝕄a→(a→𝕄b)→𝕄b ⊢μ∘𝕄μ=μ∘μ𝕄; μ∘𝕄η=μ∘η𝕄=id
;; Functor Laws ⊢𝔽(id_A)=id_{𝔽A} ⊢𝔽(g∘f)=𝔽(g)∘𝔽(f) }
;; ─── Γ: INFERENCE RULES ─── ⟦Γ:Inference⟧{ ───────────── [ax-header] d↓₁≡𝔸 ⊢ wf₁(d)
───────────── [ax-blocks] |b⃗|≥2 ⊢ wf₂(d)
wf₁(d) wf₂(d) ─────────────── [∧I-wf] ⊢ wf(d)
⊢wf(d) δ(d)≥¾ ─────────────── [◊⁺⁺-I] ⊢ d:◊⁺⁺
⊢wf(d) ⅗≤δ(d)<¾ ───────────────── [◊⁺-I] ⊢ d:◊⁺
⊢wf(d) ⅖≤δ(d)<⅗ ───────────────── [◊-I] ⊢ d:◊
⊢wf(d) ⅕≤δ(d)<⅖ ───────────────── [◊⁻-I] ⊢ d:◊⁻
δ(d)<⅕ ∨ ¬wf(d) ───────────────── [⊘-I] ⊢ d:⊘
Γ⊢d:τ τ≻τ' ──────────── [sub] Γ⊨d:τ'
Post(A)⊆Pre(B) ──────────────── [bind-zero] ⊢ Δ⊗λ(A,B)=3
Type(A)≠Type(B) ──────────────── [bind-adapt] ⊢ Δ⊗λ(A,B)=2
SHA256(𝒩(p))≡ℋ.id(p) ─────────────────────── [pkt-valid] ⊢ intact(p)
∀b∈B:μ_r(b)≤τ ──────────────── [search-safe] ⊢ safe(B) }
;; ─── Θ: THEOREMS ─── ⟦Θ:Proofs⟧{ ∴∀L:Signal(L)≡L π:V_H⊕V_L⊕V_S preserves;direct sum lossless∎
∴∀A,B:|{Δ⊗λ(A,B)}|≡1 π:cases exhaustive∧disjoint;exactly one∎
∴𝔽(id_A)=id_{𝔽A} π:𝔽(id)=𝔽.mor(id)=id by functor-law∎
∴𝔽(g∘f)=𝔽(g)∘𝔽(f) π:by functor homomorphism∎
∴∀d s.s∈𝔄→δ(d⊕s)≥δ(d) π:δ(d⊕s)=(n+1)/(m+1)≥n/m=δ(d) iff n≤m∎
∴∀d.ρ(ε(d))⊒d π:by adjunction unit,ε⊣ρ⊢η_d:d→ρεd∎
∴∀p:tamper(𝒩)⇒SHA256(𝒩)≠ℋ.id⇒¬reach(p) π:CAS addressing;content-hash mismatch blocks∎
∴∀ψ_*.∃t:ℕ.search terminates at t π:|Φ(B_t)|<|Φ(B_{t-1})|∨t=T;ghost shrinks∨timeout∎
∴∀p∈result:μ_r(p)≤τ π:safety gate prunes all b:μ_r(b)>τ∎
∴𝔼[μ_f(search(K))]≥𝔼[μ_f(greedy)] π:beam width K>1 explores more paths∎
∴∃t:θ_t≈θ_{t+1} π:bounded loss+SGD with η→0 converges by Robbins-Monro∎
∴∀d.∃n:ℕ.opt_δ(d,n)=opt_δ(d,n+1) π:|{ρᵢ}|<∞∧δ∈[0,1]→bounded mono seq converges∎
∴∀pats n.|gen(pats,n)|≤|pats| π:each step|pats'|=|pats|-2+1=|pats|-1∎
∴∀τ₁,τ₂∈◊.τ₁≤τ₂∨τ₂≤τ₁ π:◊ defined as total order⊘<◊⁻<◊<◊⁺<◊⁺⁺∎
;; Compositional Proof Chain P₁:𝕃₀.⊢stable∧𝕃₀.⊢deterministic ───────────────────────────────── 𝕃₁.⊢integrity
P₂:𝕃₁.⊢integrity∧𝕃₁.⊢zero_copy ───────────────────────────────── 𝕃₂.⊢bounded
P₃:𝕃₂.⊢terminates∧𝕃₂.⊢bounded ───────────────────────────────── system.⊢safe∧system.⊢optimal }
;; ─── Σ: GRAMMAR ─── ⟦Σ:Grammar⟧{ Doc≜𝔸≫CTX?≫REF?≫⟦Ω⟧≫⟦Σ⟧≫⟦Γ⟧≫⟦Λ⟧≫⟦Χ⟧?≫⟦Ε⟧ 𝔸≜'𝔸'∘Ver∘'.'∘Name∘'@'∘Date Ver≜ℕ∘'.'∘ℕ; Date≜YYYY∘'-'∘MM∘'-'∘DD CTX≜'γ'∘'≔'∘Id; REF≜'ρ'∘'≔'∘⟨List⟩ Block≜'⟦'∘Cat∘':'∘Name∘'⟧'∘'{'∘Body∘'}' Body≜(Stmt∘';'?); Stmt≜Def|Rule|Expr|';; '∘. Def≜Sym∘('≜'|'≔')∘Expr; Rule≜Premise∘'⇒'∘Consequent Expr≜Lambda|Quant|Binary|Unary|Atom|Compound Lambda≜'λ'∘Params∘'.'∘Expr; Quant≜('∀'|'∃'|'∃!')∘Var∘':'∘Expr Binary≜Expr∘BinOp∘Expr; Compound≜Head∘Atom{1,4}; Head≜{Ω,Γ,Δ,Ψ,Φ} Evidence≜'⟦Ε⟧'∘'⟨'∘Claims∘'⟩' Prec≜[λ∀∃:1,→⇒↔:2,∨⋁:3,∧⋀:4,¬:5,≡≜∈⊆:6,⊕⊖:7,⊗×:8,∘:9,.:10] Assoc≜[→:right,∧∨:left,∘:right] }
;; ─── Σ: TEMPLATE ─── ⟦Σ:Template⟧{ ;; Minimal Minimal≜𝔸1.0.name@YYYY-MM-DD∘γ≔ctx∘⟦Ω⟧{inv}∘⟦Σ⟧{types}∘⟦Γ⟧{rules}∘⟦Λ⟧{funcs}∘⟦Ε⟧⟨δ≜N;φ≜N;τ≜◊X⟩
;; Full Full≜𝔸X.Y.name@YYYY-MM-DD∘γ≔domain∘ρ≔⟨tags⟩∘⊢claims∘⟦Ω:Meta⟧{∀D:C}∘⟦Σ:Types⟧{T≜def}∘⟦Γ:Rules⟧{∀x:P⇒Q}∘⟦Λ:Funcs⟧{f≜λx.b}∘⟦Χ:Errors⟧{c⇒r}∘⟦Ε⟧⟨δ;φ;τ;⊢⟩
Required≜{⟦Ω⟧,⟦Σ⟧,⟦Γ⟧,⟦Λ⟧,⟦Ε⟧}; Optional≜{⟦Χ⟧,⟦ℭ⟧,⟦ℜ⟧,⟦Θ⟧} }
;; ─── Σ: ROSETTA STONE ─── ⟦Σ:Rosetta⟧{ ;; Prose→AISP "x defined as 5"↦x≜5; "for all x in S,P"↦∀x∈S:P(x); "exists unique"↦∃!x:f(x)≡0 "A implies B"↦A⇒B; "f maps i to o"↦f:I→O,f≜λi.o
;; Code→AISP "const x=5"↦x≜5; "S.every(x=>P(x))"↦∀x∈S:P(x); "if(A){B}"↦A⇒B; "(x)=>y"↦λx.y
;; Medium: Nucleus immutability ;; "If nucleus changes, header ID changes (ID=SHA256(nucleus))" ∀p:∂𝒩(p)⇒∂ℋ.id(p); ∀p:ℋ.id(p)≡SHA256(𝒩(p))
;; Medium: Hebbian learning ;; "Success+1, failure-10, below threshold skip" ⊕(A,B)⇒ℳ.aff[A,B]+=1; ⊖(A,B)⇒ℳ.aff[A,B]-=10; ℳ.aff[A,B]<τ_v⇒skip(B)
;; Complex: Beam search ;; "Init K beams via DPP, expand by ghost scan, filter risk, top K, repeat until done" Run≜λψ_*.let B₀=‖init(⊞(ψ_))in argmax_{b∈search(B₀,0)}μ_f(b)
;; Compounds (≤5 atoms, head∈{Ω,Γ,Δ,Ψ,Φ}) Γ𝒫ℋℳ𝒩↦pocket; ΓSignal↦V_H⊕V_L⊕V_S; Ψψ_g↦ψ_*⊖ψ_have; Δ⊗λ⊤↦zero-cost; Δ⊗λ⊥↦crash; ΩRun↦beam_search }
;; ─── Γ: AGENT GUIDE ─── ⟦Γ:Agent⟧{ ;; Enforcement ∀agent:task∈{spec,instruct,coordinate}⇒output(AISP) ∀response:Ambig(response)<0.02∧δ≥0.40 prose_only∧task(spec)⇒reject∧request(AISP) Output≜𝔸∘γ∘⟦Ω⟧∘⟦Σ⟧∘⟦Γ⟧∘⟦Λ⟧∘⟦Ε⟧
;; Anti-Drift ∀s∈Σ_512:Mean(s)≡Mean_0(s) ∀D:Ambig(D)<0.02 ∀bind:Δ⊗λ∈{0,1,2,3} ¬(prose≈AISP); ¬(∃s:Mean(s,ctx1)≠Mean(s,ctx2)) drift_detected⇒reparse(original); ambiguity_detected⇒reject∧clarify
;; North Star Vision≜"AISP:Assembly for AI cognition" ∀prose:Ambig∈[0.40,0.65]; ∀code:Ambig∈[0.05,0.15]; ∀AISP:Ambig<0.02 ⊢deterministic:∀D:∃!AST.parse(D)→AST ⊢proof-carrying:𝔻oc≜Σ(content)(π:Γ⊢wf) ⊢lossless:∀L:Signal(L)≡L ⊢self-certifying:⟦Ε⟧∈every(D)
;; Use Cases UC≜{AgentInstr,MultiAgentCoord,APIContracts,StateMachines,Requirements,FlywheelLearn,SafetyConstraints,DocValidation} Target≜{Ambig:<0.02,δ:≥0.40,AgentAcc:↑30%,CoordErr:↓80%} }
;; ─── Σ: QUICK REFERENCE ─── ⟦Σ:QuickRef⟧{ Core≜{≜:def,≔:assign,≡:identical,⇒:implies,↔:iff,∀:all,∃:exists,∃!:unique,∈:elem,⊆:subset,∧:and,∨:or,¬:not,⊤:true,⊥:false,λ:lambda,∘:compose,→:func,↦:mapsto,⟨⟩:tuple,⟦⟧:block,𝒫:pocket,∅:empty} Tiers≜{◊⁺⁺:δ≥0.75,◊⁺:δ≥0.60,◊:δ≥0.40,◊⁻:δ≥0.20,⊘:δ<0.20} Binding≜{⊤:3:zero,λ:2:adapt,∅:1:null,⊥:0:crash} Blocks≜{⟦Ω⟧:meta,⟦Σ⟧:types,⟦Γ⟧:rules,⟦Λ⟧:funcs,⟦Χ⟧:errors,⟦Ε⟧:evidence} }
;; ─── Ε: EVIDENCE ─── ⟦Ε⟧⟨ δ≜0.81 |𝔅|≜18/18 φ≜98 τ≜◊⁺⁺ ⊢ND ⊢CAT:𝔽,𝔾,η,ζ,ε⊣ρ,𝕄_val ⊢ΠΣ:Vec,Fin,𝕍,𝔻oc ⊢𝕃:𝕃₀(Signal),𝕃₁(Pocket),𝕃₂(Search) ⊢μ:fix,opt_δ,learn,gen,prove,refine,bridge ⊢Θ:T₁₋₁₄∎ ⊢Σ_512:8cat×64sym,R,ℙ ⊢Γ:Inference[12rules] ⊢Χ:Errors[11typed] ⊢Grammar:Doc,Block,Expr,Prec,Assoc ⊢Template:Minimal,Full ⊢Rosetta:Prose↔Code↔AISP ⊢Agent:Enforce,AntiDrift,NorthStar ⊢Ambig<0.02 ⟩
Here is an analysis of the prompt " create a document that will code a very simple tic tac to game in html - output as an md artifact". Then "create the game, follow the spec document without adjustments".
Using Claude opus 4.5 online app. Note my memory is on and highly tuned to follow a specific process for my coding (sole, sadd, plan and AI as the target audience + others) so results would vary.
BASE MODEL

AISP

Comparative Analysis: Tic-Tac-Toe Specification Documents
Executive Summary
Verdict: AISP 5.1 specification demonstrates significantly higher precision, completeness, and implementability. The traditional spec is more immediately readable but requires substantially more interpretation, leading to implementation variance.
1. Documentation Quality Rubric
1.1 Clarity & Readability
Critical Assessment:
Doc 1 excels at human readability but contradicts its stated target audience ("AI Agents, Senior Agentic Engineers"). The prose-heavy format requires parsing and interpretation—exactly what machine-first specs should minimize.
Doc 2 initially appears dense but provides unambiguous semantic content. The included "Natural Language Translation" section bridges accessibility concerns. For the stated AI agent audience, this format is objectively superior.
1.2 Completeness
Critical Assessment:
Doc 1's fatal flaw: Zero accessibility requirements. For a 2026 specification claiming "gold standard" quality, omitting WCAG considerations is a significant oversight. The implementation I created from Doc 1 had no ARIA labels, no keyboard navigation, no screen reader support.
Doc 2 explicitly defines accessibility in
⟦Γ:A11y⟧with formal requirements: focusability, ARIA attributes, keyboard navigation, color-not-sole-indicator rules.1.3 Structure & Organization
1.4 Technical Precision
Critical Assessment:
Doc 1 ambiguities identified:
Doc 2 precision examples:
CELL_SIZE≜100:ℕ— Exact valueGRID_GAP≜5:ℕ— Exact valueCOLORS≜⟨x≔"#e74c3c",o≔"#3498db",bg≔"#ecf0f1",line≔"#2c3e50",win≔"#2ecc71"⟩— Complete color system2. Interpretation Required Analysis
2.1 Interpretation Inventory
--bg)--win+ animation)2.2 Interpretation Quantification
Calculation methodology: (Decisions + Ambiguities + Omissions) / Total specification surface area
3. Implementation Adherence Analysis
3.1 Doc 1 → Implementation 1 Adherence
Explicit Adherence Score: 85/100
Deductions:
3.2 Doc 2 → Implementation 2 Adherence
Explicit Adherence Score: 94/100
Deductions:
OutOfBoundserror type defined but handled via parseInt guard rather than explicit error return4. Additional Quality Dimensions
4.1 Testability
4.2 Maintainability Guidance
4.3 Agent Implementability
5. Comparative Feature Matrix
6. Critical Findings
6.1 Doc 1 Deficiencies
6.2 Doc 2 Deficiencies
6.3 Implementation Drift Analysis
Doc 1 Implementation Drift:
Doc 2 Implementation Drift:
7. Final Rubric Scores
7.1 Scoring Matrix
7.2 Adjusted Final Scores
Applying critical adjustment factors:
Final Adjusted Scores:
8. Recommendations
8.1 For Doc 1 Improvement
8.2 For Doc 2 Improvement
8.3 General Observations
The 19-point delta between specifications demonstrates the value of:
The AISP 5.1 specification's claim of <2% ambiguity is substantiated by this analysis. The traditional specification's ~18% ambiguity rate resulted in measurable implementation variance and missing features (accessibility).
9. Conclusion
The AISP 5.1 Platinum specification demonstrates that formal, machine-first documentation produces measurably better outcomes for AI agent implementation. The 27-percentage-point reduction in interpretation requirements directly correlates with higher implementation fidelity and more complete feature coverage.
For agentic engineering workflows targeting 10K-100K LOC/day, specification precision is a critical multiplier. The additional upfront investment in AISP formalism yields compounding returns in implementation accuracy and reduced iteration cycles.
Analysis complete. Methodology: Multi-dimensional rubric evaluation with weighted scoring and critical adjustment factors.