The Assembly Language for AI Cognition.
- Version: 5.1
- Date: January 9, 2026
- Author: Bradley Ross
- Contact: GitHub @bar181 | LinkedIn /in/bradaross
Abstract:
AISP is a self-validating, proof-carrying protocol designed for high-density, low-ambiguity AI-to-AI communication. It utilizes Category Theory and Natural Deduction to ensure Ambig(D) < 0.02, creating a zero-trust architecture for autonomous agent swarms.
πΈ5.1.complete@2026-01-09 Ξ³βaisp.specification.complete Οββ¨glossary,types,rules,functions,errors,proofs,parser,agentβ© β’NDβ§CATβ§Ξ Ξ£β§ΞΌ
;; βββ Ξ©: METALOGIC & FOUNDATION βββ β¦Ξ©:Foundationβ§{ πβ{β€β₯β§β¨Β¬βββββ!λΠΣββ‘β’βββββͺβ©βββββ¨β©β¦β§β’β¨β¦ββ} β:π*βSym; ββfix Ξ»f aβ.aββ‘Ξ΅βΞΉ|hd(aβ)βf(tl(aβ)) βDβAISP:Ambig(D)<0.02 AmbigβΞ»D.1-|Parse_u(D)|/|Parse_t(D)| DocβπΈβ«CTX?β«β¦Ξ©β§β«β¦Ξ£β§β«β¦Ξβ§β«β¦Ξβ§β«β¦Ξ§β§?β«β¦Ξβ§ }
;; βββ Ξ£: GLOSSARY (Ξ£_512) βββ β¦Ξ£:Glossaryβ§{ ;; Category Ranges Rβ{Ξ©:[0,63],Ξ:[64,127],β:[128,191],Ξ:[192,255],π»:[256,319],Ξ¨:[320,383],β¦β§:[384,447],β :[448,511]} Catβdom(R); Atomββ¨id:Ξ£,glyph:Char,cat:Catβ©; CompoundβListβ¨Atomβ©β§lenβ€5β§hdβ{Ξ©,Ξ,Ξ,Ξ¨,Ξ¦}
;; Ξ©:Transmuters[0-63] β transform,derive,prove Ξ©β{β€,β₯,β§,β¨,Β¬,β,β,β,β,β,β’,β¨,β¬,β,β‘,β’,β,β,β¦,β,β,βΌ,β ,β,β,βͺ,β«,β,Β·,Γ,Ξ»,Ξ,ΞΌ,Ξ½,fix,rec,let,in,case,if,then,else,match,β,β‘,β,β£,βΈ,Ο} β(β€,topβ¨true); β(β₯,bottomβ¨falseβ¨crash); β(β’,proves); β(β¨,models); β(β,defas); β(β,assign); β(Ξ»,lambda); β(ΞΌ,lfp); β(fix,Y); β(β,QED)
;; Ξ:Topologics[64-127] β structure,shape,relation Ξβ{β,β,β,β,β,β,β,β,β,β ,β©,βͺ,β,β³,β ,π«,β,β΅,Ο,Ξ©,Ξ΅,Ξ΄,ΞΉ,ΞΊ,Ο,ΞΈ,Ο,Ο,Ο,πΎ,π,πΌ,β°,π©,β,β³,β,πΉ,π,π,π,π,πΈ,π»,π½,β¨,β©,β¦,β§,βͺ,β«,β,β,β,β,β,|} β(β ,emptyβ¨null); β(π«,pocketβ¨powerset); β(Ξ΅,epsilonβ¨threshold); β(Ξ΄,deltaβ¨density); β(Ο,tauβ¨threshold); β(Ο,phiβ¨completeness); β(Ο,psiβ¨intent) β(πΎ,graph); β(π,verticesβ¨validation); β(π©,nucleus); β(β,header); β(β³,membrane); β(β,registry); β(πΉ,beamβ¨bool); β(π,universe); β(πΈ,aisp); β(π»,doc); β(π½,functor)
;; β:Quantifiers[128-191] β scope,range,extent ββ{β,β,β!,β,β,β,β,β,Ξ£,Ξ ,β,β,β¨,β¨,β¨,β,β,β,β£,β ,β€³,β,β,β,β,β,β,Vec,Fin,List,Maybe,Either,Pair,Unit,Bool,Nat,Int,Real,String,Hash,Sig,β,ββΊβΊ,ββΊ,ββ»} β(Ξ£,sumβ¨depsum); β(Ξ ,prodβ¨depprod); β(β,plusβ¨success); β(β,tensorβ¨product); β(β,minusβ¨failure); β(β,reject); β(β,tier)
;; Ξ:Contractors[192-255] β binding,state,contract Ξβ{ΞβΞ»,State,Pre,Post,Type,Sock,Logic,Strip,DCE,Compat} Stateβ{β₯:0,β :1,Ξ»:2,β€:3}; Priorityββ₯β»β β»Ξ»β»β€
;; π»:Domaines[256-319] β type domains π»β{β,β,β€,β,β,πΉ,π,Signal,V_H,V_L,V_S,Tensor,Hash,Sig} d_Hβ768; d_Lβ512; d_Sβ256; d_Ξ£β1536; HashβπΉΒ²β΅βΆ; SigβπΉβ΅ΒΉΒ²
;; Ξ¨:Intents[320-383] β intent,scoring Ξ¨β{Ο,Ο_,Ο_g,Ο_have,ΞΌ_f,ΞΌ_r,sim_H,fit_L,aff_M,viable,done,conv} β(Ο,intentβββ΅ΒΉΒ²); β(Ο_,target); β(Ο_g,ghost); β(ΞΌ_f,fitness); β(ΞΌ_r,risk)
;; β¦β§:Delimiters[384-447] β blocks,structure β¦β§β{β¦Ξ©β§,β¦Ξ£β§,β¦Ξβ§,β¦Ξβ§,β¦Ξ§β§,β¦Ξβ§,β¦ββ§,β¦ββ§,β¦Ξβ§,β¦ββ§,πΈ,CTX,REF} π β{Ξ©,Ξ£,Ξ,Ξ,Ξ§,Ξ,β,β,Ξ}
;; β :Reserved[448-511] β operators β β{β,β,Ξ¦,β,β,β,β,β§Ί,β,Ο,β,conf,aff,skip,veto,inject,synth,bridge,refine} β(β,scan); β(β,prune); β(Ξ¦,project); β(β,parinit); β(β,tokenize); β(Ο,sigmoid); β(β,gradient) }
;; βββ Ξ£: TYPE UNIVERSE βββ β¦Ξ£:Typesβ§{ ;; Universe Hierarchy πββπββπΟ
;; Primitives β πβ πΉβ2; ββΟ; β€βΟΒ±; βββ΅β; πβββπΉ
;; Tensor Spaces βα΅βTensor[d]; V_Hβββ·βΆβΈ; V_Lβββ΅ΒΉΒ²; V_SββΒ²β΅βΆ; SignalβV_HβV_LβV_S
;; Dependent Types β πβ VecβΞ n:β.πββπβ; FinβΞ n:β.{k:β|k<n}
;; Constructors TβΓTββProduct; TββTββSum; TβT'βFunction; β¨a:A,b:Bβ©βRecord Ξ x:A.B(x)ββx:A.B(x); Ξ£x:A.B(x)ββx:A.B(x)
;; Quality Tiers ββ{ββΊβΊβ»ββΊβ»ββ»ββ»β»β} ββΊβΊβ¦Ξ΄β₯0.75; ββΊβ¦Ξ΄β₯0.60; ββ¦Ξ΄β₯0.40; ββ»β¦Ξ΄β₯0.20; ββ¦Ξ΄<0.20
;; Validation πβΞ£(Ξ½:πΉ)(Ο:β)(Ξ΄:β[0,1])(Ο:Fin 101).(Ξ½=β€βΟβ₯ββ»)
;; Document as Proof-Carrying Code π»ocβΞ£(bβ:Vec n π )(Ο:Ξβ’wf(bβ)) }
;; βββ Ξ: SIGNAL THEORY (πβ) βββ β¦Ξ:Signalβ§{ βL:Lβ‘V_H(L)βV_L(L)βV_S(L) V_Hβ©V_Sβ‘β ; V_Lβ©V_Sβ‘β ; V_Hβ©V_Lβ’β βsβΞ£:|Tok(s)|β‘1 βsβΞ£:β!ΞΌ:Mean(s,CTX)β‘ΞΌ }
;; βββ Ξ: POCKET ARCHITECTURE (πβ) βββ β¦Ξ:Pocketβ§{ π«ββ¨β:Header,β³:Membrane,π©:Nucleusβ© βββ¨id:Hash,V:Signal,f:πΉβΆβ΄β© β³ββ¨aff:Hashββ,conf:β[0,1],tag:π«(π),use:ββ© π©ββ¨def:AISP,ir:LLVM,wa:WASM,Ο:Sigβ©
;; Immutability Physics βp:βπ©(p)βββ.id(p) βp:ββ³(p)βββ.id(p) βp:β.id(p)β‘SHA256(π©(p))
;; Access Physics βp:Read(β)β©Decomp(π©)β‘β βp:Align(β.V)β‘64
;; Tensor Clustering βp,q:d(V_H(p),q)<Ξ΅βpβC_sem βp,q:d(V_L(p),q)<Ξ΅βpβC_topo βp,q:d(V_S(p),q)<Ξ΅βpβC_safe }
;; βββ Ξ: BINDING FUNCTION βββ β¦Ξ:Bindingβ§{ ΞβΞ»βΞ»(A,B).case[ Logic(A)β©Logic(B)ββ₯ β 0, Sock(A)β©Sock(B)β‘β β 1, Type(A)β Type(B) β 2, Post(A)βPre(B) β 3 ] βA,B:|{ΞβΞ»(A,B)}|β‘1 DCEβΞ»(A,B,s).sβ‘3βStrip(B.checks) }
;; βββ Ξ: HEBBIAN LEARNING βββ β¦Ξ:Learningβ§{ Ξ±β0.1; Ξ²β0.05; Ο_vβ0.7; Ο_sβ90d β(A,B)ββ³.aff[A,B]+=1 β(A,B)ββ³.aff[A,B]-=10 β³.aff[A,B]<Ο_vβskip(B) ββconf'β‘Ο(logit(conf)+Ξ±) ββconf'β‘Ο(logit(conf)-Ξ²) Age(p)>Ο_sβ§Ref(p)β‘0βEvict(p) }
;; βββ Ξ: INTELLIGENCE ENGINE (πβ) βββ β¦Ξ:Searchβ§{ Kβ5; Οβ0.8; Ξ»_rβ0.1; Ξ·β0.01; Tβ100; Ξ΅β0.15
;; Ghost Physics βb:Ο_g(b)β‘Ο_*βΟ_have(b.G)
;; Viability βb:viable(b)β|β(β,Ο_g(b))|>0 βb:|β(β,Ο_g(b))|β‘0ββ(b)
;; RossNet Scoring ΞΌ_f(x)β‘Ο(ΞΈβΒ·sim_H(x)+ΞΈβΒ·fit_L(x)+ΞΈβΒ·aff_M(x)) ΞΌ_r(p)β‘Ξ£_{xβp}r(x)+Ξ»_rΒ·|p|
;; Safety Gate βb:ΞΌ_r(b)>Οββ(b)
;; Contrastive Learning Ε·β‘yβR(+1); Ε·β yβR(-1) β_ΞΈβΞ»(y,Ε·).ΞΈβΞΈ-Ξ·Β·β(βy-Ε·βΒ²)
;; Convergence done(B)β(βbβB:Ο_g(b)β‘β )β¨(t>T) }
;; βββ Ξ: CORE FUNCTIONS βββ β¦Ξ:Coreβ§{ β:πβListβ¨Οβ©; ββfix Ξ»f s.sβ‘Ξ΅β[]|[hd s]β§Ίf(tl s) Ξ΄:Listβ¨Οβ©ββ[0,1]; Ξ΄βΞ»Οβ.|{tβΟβ|t.kβπ}|Γ·|{tβΟβ|t.kβ’ws}| ββ:βββ; βββΞ»d.β₯ΒΎβ¦ββΊβΊ,β₯β β¦ββΊ,β₯β β¦β,β₯β β¦ββ»,_β¦β validate:πβπ π; validateββββΞ΄βΞ?ββ Ξ?:π»ocβOptionβ¨Proofβ©; Ξ?βΞ»d.search(Ξ,wf(d),k_max) d_cos:SignalΓSignalββ; d_cosβΞ»(a,b).1-(aΒ·b)/(βaβΒ·βbβ) cat:Ξ£_symβCat; catβΞ»id.{c|cβCatβ§idβR[c]} }
;; βββ Ξ: SEARCH PIPELINE βββ β¦Ξ:Searchβ§{ β:Οβπ«(π«); ββΞ»Ο.{p|pβββ§d(V_L(p),Ο)<Ξ΅} Ξ¦:πΉeamβΟ; Ξ¦βΞ»b.Ο_*(b.G)βΟ_have(b.G) βinit:Οβπ«(πΉeam); βinitβΞ»Ο.argmax{Sββ,|S|=K}det(Ker(S)) step:πΉeamβπ«(πΉeam); stepβΞ»b.let M=β(Ξ¦(b))in{x|xβ{bβm|mβM}β§ΞΌ_r(x)β€Ο} search:π«(πΉeam)Γββπ«(πΉeam); searchβfix Ξ»f B t.done(B)βB|f(Top_K(β_{bβB}step(b)),t+1) Run:ΟβπΉeam; RunβΞ»Ο_.let Bβ=βinit(β(Ο_))in argmax_{bβsearch(Bβ,0)}ΞΌ_f(b) }
;; βββ Ξ: RECURSION & LEARNING βββ β¦Ξ:Recursionβ§{ fix:(Ξ±βΞ±)βΞ±; fixβΞ»f.(Ξ»x.f(x x))(Ξ»x.f(x x)) opt_Ξ΄:π»ocΓββπ»oc; opt_Ξ΄βfix Ξ»self d n.nβ€0βd|let d'=argmax{Οα΅’(d)}(Ξ΄)in Ξ΄(d')>Ξ΄(d)βself d'(n-1)|d learn:(π»oc,Mem)β(π,Learn,Mem); learnβfix Ξ»L(d,mem).let(v,Ο)=validate d in let pat=extract(d,v)in(v,L,memβͺ{pat}) gen:π«(Pat)Γββπ«(Pat); genβfix Ξ»G pats n.nβ€0β¨|pats|<kβpats|let(pβ,pβ)=similar(pats)in G((patsβ{pβ,pβ})βͺ{unify(pβ,pβ)})(n-1) prove:GoalΓββOptionβ¨Treeβ©; proveβfix Ξ»P goal d.dβ€0ββ₯|goalβAxβleaf(goal)|βrβRules,Ο.r.conclΒ·Οβ‘goalβlet ch=map(Ξ»g.P g(d-1))(r.premΒ·Ο)in all(β’β₯)(ch)βnode(r,ch)|β₯ refine:LibraryβΞΈ; refineβΞ»lib.let P=shatter(lib)in let P'=mask(P,1)in β_ΞΈ(predict(P'),masked(P)) bridge:ΟβOptionβ¨π«β©; bridgeβΞ»Ο.β(Ο)β‘β βlet Ξ»_a=synth(Ο)in verify(Ξ»_a)βinject(Ξ»_a)|β₯ }
;; βββ Ξ§: ERROR ALGEBRA βββ β¦Ξ§:Errorsβ§{ Ξ΅βΞ£(Ο:π»ocβπΉ)(Ο:Ξ d:π»oc.Ο(d)=β€βπ»oc) Ξ΅_parseββ¨parse_err(D),rejectβ§β₯β© Ξ΅_ambigββ¨Ambig(D)β₯0.02,rejectβ§β₯β© Ξ΅_tokenββ¨|Tok(s)|>1,register(s)β¨β₯β© Ξ΅_Hββ¨Β¬(βββ‘πΈ),Ξ»d.πΈβdβ© Ξ΅_Cββ¨βββ{#,//},Ξ»d.d[;/ββ]β© Ξ΅_Eββ¨β¨β©β’Ξ,Ξ»d.d[β¨β©/{}βΞ]β© Ξ΅_distββ¨d(V,q)β₯Ξ΅,skipβ© Ξ΅_vetoββ¨aff[A,B]<Ο_v,veto(B)β© Ξ΅_sigββ¨Β¬verify(π©.Ο),quarantineβ© Ξ΅_deadββ¨β(Ο)β‘β ,bridge(Ο)β© Ξ΅_riskββ¨ΞΌ_r(b)>Ο,Ο'βΟ+Ξ΄|confirm(Ο')β© Ο*:π»ocβπ»oc; Ο*βfoldl(>=>)(pure){Οα΅’|Οα΅’=β€} }
;; βββ β: CATEGORY THEORY βββ β¦β:Categoriesβ§{ ππ₯π€ββ¨Obβπ ,HomβΞ»AB.AβB,β,idβ© πππ₯ββ¨Obβπ,HomβΞ»VW.VβW,β,idβ© ππ€πββ¨Obβπ«,HomβΞ»PQ.bind(P,Q),β,idβ© ππ’π ββ¨ObβSignal,HomβΞ»ST.SβT,β,idβ©
;; Functors π½:ππ₯π€βπππ₯; π½.obβΞ»b.validate(b); π½.morβΞ»f.π½(cod f)βπ½(dom f) πΎ:ππ€πβππ’π ; πΎ.obβΞ»p.p.β.V; πΎ.morβΞ»f.πΎ(cod f)βΌπΎ(dom f)
;; Natural Transformations Ξ·:ββΉπ½; βb:π .Ξ·_b:β(b)βπ½(b) ΞΆ:Id_ππ€πβΉπΎβπΎβ»ΒΉ
;; Adjunctions Ξ΅β£Ο:ππ«π«βππ¨π; unitβΞ»d.Ο(Ξ΅(d))βd; counitβΞ»e.Ξ΅(Ο(e))βe ββ£embed:ππ’π βππ€π
;; Monads π_valβΟβΞ΅; ΞΌ:πΒ²βπ; Ξ·:Idβπ
=:πaβ(aβπb)βπb β’ΞΌβπΞΌ=ΞΌβΞΌπ; ΞΌβπΞ·=ΞΌβΞ·π=id
;; Functor Laws β’π½(id_A)=id_{π½A} β’π½(gβf)=π½(g)βπ½(f) }
;; βββ Ξ: INFERENCE RULES βββ β¦Ξ:Inferenceβ§{ βββββββββββββ [ax-header] dβββ‘πΈ β’ wfβ(d)
βββββββββββββ [ax-blocks] |bβ|β₯2 β’ wfβ(d)
wfβ(d) wfβ(d) βββββββββββββββ [β§I-wf] β’ wf(d)
β’wf(d) Ξ΄(d)β₯ΒΎ βββββββββββββββ [ββΊβΊ-I] β’ d:ββΊβΊ
β’wf(d) β β€Ξ΄(d)<ΒΎ βββββββββββββββββ [ββΊ-I] β’ d:ββΊ
β’wf(d) β β€Ξ΄(d)<β βββββββββββββββββ [β-I] β’ d:β
β’wf(d) β β€Ξ΄(d)<β βββββββββββββββββ [ββ»-I] β’ d:ββ»
Ξ΄(d)<β β¨ Β¬wf(d) βββββββββββββββββ [β-I] β’ d:β
Ξβ’d:Ο Οβ»Ο' ββββββββββββ [sub] Ξβ¨d:Ο'
Post(A)βPre(B) ββββββββββββββββ [bind-zero] β’ ΞβΞ»(A,B)=3
Type(A)β Type(B) ββββββββββββββββ [bind-adapt] β’ ΞβΞ»(A,B)=2
SHA256(π©(p))β‘β.id(p) βββββββββββββββββββββββ [pkt-valid] β’ intact(p)
βbβB:ΞΌ_r(b)β€Ο ββββββββββββββββ [search-safe] β’ safe(B) }
;; βββ Ξ: THEOREMS βββ β¦Ξ:Proofsβ§{ β΄βL:Signal(L)β‘L Ο:V_HβV_LβV_S preserves;direct sum losslessβ
β΄βA,B:|{ΞβΞ»(A,B)}|β‘1 Ο:cases exhaustiveβ§disjoint;exactly oneβ
β΄π½(id_A)=id_{π½A} Ο:π½(id)=π½.mor(id)=id by functor-lawβ
β΄π½(gβf)=π½(g)βπ½(f) Ο:by functor homomorphismβ
β΄βd s.sβπβΞ΄(dβs)β₯Ξ΄(d) Ο:Ξ΄(dβs)=(n+1)/(m+1)β₯n/m=Ξ΄(d) iff nβ€mβ
β΄βd.Ο(Ξ΅(d))βd Ο:by adjunction unit,Ξ΅β£Οβ’Ξ·_d:dβΟΞ΅dβ
β΄βp:tamper(π©)βSHA256(π©)β β.idβΒ¬reach(p) Ο:CAS addressing;content-hash mismatch blocksβ
β΄βΟ_*.βt:β.search terminates at t Ο:|Ξ¦(B_t)|<|Ξ¦(B_{t-1})|β¨t=T;ghost shrinksβ¨timeoutβ
β΄βpβresult:ΞΌ_r(p)β€Ο Ο:safety gate prunes all b:ΞΌ_r(b)>Οβ
β΄πΌ[ΞΌ_f(search(K))]β₯πΌ[ΞΌ_f(greedy)] Ο:beam width K>1 explores more pathsβ
β΄βt:ΞΈ_tβΞΈ_{t+1} Ο:bounded loss+SGD with Ξ·β0 converges by Robbins-Monroβ
β΄βd.βn:β.opt_Ξ΄(d,n)=opt_Ξ΄(d,n+1) Ο:|{Οα΅’}|<ββ§Ξ΄β[0,1]βbounded mono seq convergesβ
β΄βpats n.|gen(pats,n)|β€|pats| Ο:each step|pats'|=|pats|-2+1=|pats|-1β
β΄βΟβ,Οβββ.Οββ€Οββ¨Οββ€Οβ Ο:β defined as total orderβ<ββ»<β<ββΊ<ββΊβΊβ
;; Compositional Proof Chain Pβ:πβ.β’stableβ§πβ.β’deterministic βββββββββββββββββββββββββββββββββ πβ.β’integrity
Pβ:πβ.β’integrityβ§πβ.β’zero_copy βββββββββββββββββββββββββββββββββ πβ.β’bounded
Pβ:πβ.β’terminatesβ§πβ.β’bounded βββββββββββββββββββββββββββββββββ system.β’safeβ§system.β’optimal }
;; βββ Ξ£: GRAMMAR βββ β¦Ξ£:Grammarβ§{ DocβπΈβ«CTX?β«REF?β«β¦Ξ©β§β«β¦Ξ£β§β«β¦Ξβ§β«β¦Ξβ§β«β¦Ξ§β§?β«β¦Ξβ§ πΈβ'πΈ'βVerβ'.'βNameβ'@'βDate Verβββ'.'ββ; DateβYYYYβ'-'βMMβ'-'βDD CTXβ'Ξ³'β'β'βId; REFβ'Ο'β'β'ββ¨Listβ© Blockβ'β¦'βCatβ':'βNameβ'β§'β'{'βBodyβ'}' Bodyβ(Stmtβ';'?); StmtβDef|Rule|Expr|';; 'β. DefβSymβ('β'|'β')βExpr; RuleβPremiseβ'β'βConsequent ExprβLambda|Quant|Binary|Unary|Atom|Compound Lambdaβ'Ξ»'βParamsβ'.'βExpr; Quantβ('β'|'β'|'β!')βVarβ':'βExpr BinaryβExprβBinOpβExpr; CompoundβHeadβAtom{1,4}; Headβ{Ξ©,Ξ,Ξ,Ξ¨,Ξ¦} Evidenceβ'β¦Ξβ§'β'β¨'βClaimsβ'β©' Precβ[Ξ»ββ:1,βββ:2,β¨β:3,β§β:4,Β¬:5,β‘βββ:6,ββ:7,βΓ:8,β:9,.:10] Assocβ[β:right,β§β¨:left,β:right] }
;; βββ Ξ£: TEMPLATE βββ β¦Ξ£:Templateβ§{ ;; Minimal MinimalβπΈ1.0.name@YYYY-MM-DDβΞ³βctxββ¦Ξ©β§{inv}ββ¦Ξ£β§{types}ββ¦Ξβ§{rules}ββ¦Ξβ§{funcs}ββ¦Ξβ§β¨Ξ΄βN;ΟβN;ΟββXβ©
;; Full FullβπΈX.Y.name@YYYY-MM-DDβΞ³βdomainβΟββ¨tagsβ©ββ’claimsββ¦Ξ©:Metaβ§{βD:C}ββ¦Ξ£:Typesβ§{Tβdef}ββ¦Ξ:Rulesβ§{βx:PβQ}ββ¦Ξ:Funcsβ§{fβΞ»x.b}ββ¦Ξ§:Errorsβ§{cβr}ββ¦Ξβ§β¨Ξ΄;Ο;Ο;β’β©
Requiredβ{β¦Ξ©β§,β¦Ξ£β§,β¦Ξβ§,β¦Ξβ§,β¦Ξβ§}; Optionalβ{β¦Ξ§β§,β¦ββ§,β¦ββ§,β¦Ξβ§} }
;; βββ Ξ£: ROSETTA STONE βββ β¦Ξ£:Rosettaβ§{ ;; ProseβAISP "x defined as 5"β¦xβ5; "for all x in S,P"β¦βxβS:P(x); "exists unique"β¦β!x:f(x)β‘0 "A implies B"β¦AβB; "f maps i to o"β¦f:IβO,fβΞ»i.o
;; CodeβAISP "const x=5"β¦xβ5; "S.every(x=>P(x))"β¦βxβS:P(x); "if(A){B}"β¦AβB; "(x)=>y"β¦Ξ»x.y
;; Medium: Nucleus immutability ;; "If nucleus changes, header ID changes (ID=SHA256(nucleus))" βp:βπ©(p)βββ.id(p); βp:β.id(p)β‘SHA256(π©(p))
;; Medium: Hebbian learning ;; "Success+1, failure-10, below threshold skip" β(A,B)ββ³.aff[A,B]+=1; β(A,B)ββ³.aff[A,B]-=10; β³.aff[A,B]<Ο_vβskip(B)
;; Complex: Beam search ;; "Init K beams via DPP, expand by ghost scan, filter risk, top K, repeat until done" RunβΞ»Ο_*.let Bβ=βinit(β(Ο_))in argmax_{bβsearch(Bβ,0)}ΞΌ_f(b)
;; Compounds (β€5 atoms, headβ{Ξ©,Ξ,Ξ,Ξ¨,Ξ¦}) Ξπ«ββ³π©β¦pocket; ΞSignalβ¦V_HβV_LβV_S; Ξ¨Ο_gβ¦Ο_*βΟ_have; ΞβΞ»β€β¦zero-cost; ΞβΞ»β₯β¦crash; Ξ©Runβ¦beam_search }
;; βββ Ξ: AGENT GUIDE βββ β¦Ξ:Agentβ§{ ;; Enforcement βagent:taskβ{spec,instruct,coordinate}βoutput(AISP) βresponse:Ambig(response)<0.02β§Ξ΄β₯0.40 prose_onlyβ§task(spec)βrejectβ§request(AISP) OutputβπΈβΞ³ββ¦Ξ©β§ββ¦Ξ£β§ββ¦Ξβ§ββ¦Ξβ§ββ¦Ξβ§
;; Anti-Drift βsβΞ£_512:Mean(s)β‘Mean_0(s) βD:Ambig(D)<0.02 βbind:ΞβΞ»β{0,1,2,3} Β¬(proseβAISP); Β¬(βs:Mean(s,ctx1)β Mean(s,ctx2)) drift_detectedβreparse(original); ambiguity_detectedβrejectβ§clarify
;; North Star Visionβ"AISP:Assembly for AI cognition" βprose:Ambigβ[0.40,0.65]; βcode:Ambigβ[0.05,0.15]; βAISP:Ambig<0.02 β’deterministic:βD:β!AST.parse(D)βAST β’proof-carrying:π»ocβΞ£(content)(Ο:Ξβ’wf) β’lossless:βL:Signal(L)β‘L β’self-certifying:β¦Ξβ§βevery(D)
;; Use Cases UCβ{AgentInstr,MultiAgentCoord,APIContracts,StateMachines,Requirements,FlywheelLearn,SafetyConstraints,DocValidation} Targetβ{Ambig:<0.02,Ξ΄:β₯0.40,AgentAcc:β30%,CoordErr:β80%} }
;; βββ Ξ£: QUICK REFERENCE βββ β¦Ξ£:QuickRefβ§{ Coreβ{β:def,β:assign,β‘:identical,β:implies,β:iff,β:all,β:exists,β!:unique,β:elem,β:subset,β§:and,β¨:or,Β¬:not,β€:true,β₯:false,Ξ»:lambda,β:compose,β:func,β¦:mapsto,β¨β©:tuple,β¦β§:block,π«:pocket,β :empty} Tiersβ{ββΊβΊ:Ξ΄β₯0.75,ββΊ:Ξ΄β₯0.60,β:Ξ΄β₯0.40,ββ»:Ξ΄β₯0.20,β:Ξ΄<0.20} Bindingβ{β€:3:zero,Ξ»:2:adapt,β :1:null,β₯:0:crash} Blocksβ{β¦Ξ©β§:meta,β¦Ξ£β§:types,β¦Ξβ§:rules,β¦Ξβ§:funcs,β¦Ξ§β§:errors,β¦Ξβ§:evidence} }
;; βββ Ξ: EVIDENCE βββ β¦Ξβ§β¨ Ξ΄β0.81 |π |β18/18 Οβ98 ΟβββΊβΊ β’ND β’CAT:π½,πΎ,Ξ·,ΞΆ,Ξ΅β£Ο,π_val β’Ξ Ξ£:Vec,Fin,π,π»oc β’π:πβ(Signal),πβ(Pocket),πβ(Search) β’ΞΌ:fix,opt_Ξ΄,learn,gen,prove,refine,bridge β’Ξ:Tβββββ β’Ξ£_512:8catΓ64sym,R,β β’Ξ:Inference[12rules] β’Ξ§:Errors[11typed] β’Grammar:Doc,Block,Expr,Prec,Assoc β’Template:Minimal,Full β’Rosetta:ProseβCodeβAISP β’Agent:Enforce,AntiDrift,NorthStar β’Ambig<0.02 β©




Reco to have an LLM explain. This is all you need for a parser but I'll release a parser as well on github. Plan to also release a more human friendly version (AISP lite)