Created
December 4, 2025 22:35
-
-
Save VictorTaelin/ba6dac364c5f6d0031d6d8846cfd5fc3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Let $a<b<c$ be distinct natural numbers. Must every block of $c$ consecutive natural numbers contain three distinct numbers whose product is a multiple of $abc$? Do not use search or tools. | |
| gemini 3 deep think: | |
| Yes, the statement is true. | |
| Let $a<b<c$ be distinct natural numbers. Let $S$ be a block of $c$ consecutive natural numbers. We want to show that there exist three distinct numbers $x, y, z \in S$ such that $abc$ divides $xyz$. | |
| We proceed by induction on $c$. | |
| Base Case: The smallest value for $c$ is 3, so $a=1, b=2, c=3$. $abc=6$. Any block of 3 consecutive numbers contains three numbers whose product is a multiple of 6. | |
| Inductive Step: Assume the statement is true for all $c'<c$. | |
| Let $G=\text{gcd}(a, b, c)$. | |
| Case 1: $G>1$. | |
| Let $a=GA, b=GB, c=GC$. Then $A<B<C$ are distinct natural numbers. $C=c/G < c$. | |
| The block $S$ has length $c=GC$. $S$ contains exactly $C$ multiples of $G$. Let them be $G x_1, \dots, G x_C$, where $x_1, \dots, x_C$ form a block of $C$ consecutive integers. | |
| By the inductive hypothesis, there exist distinct $X, Y, Z$ in this block such that $ABC \mid XYZ$. | |
| Let $x=GX, y=GY, z=GZ$. These are distinct in $S$. | |
| $xyz = G^3 XYZ$. $abc = G^3 ABC$. Since $ABC \mid XYZ$, $abc \mid xyz$. | |
| Case 2: $G=1$. | |
| Let $M_k$ be the set of multiples of $k$ in $S$. $M_a, M_b, M_c$ are non-empty. | |
| If we can find a System of Distinct Representatives (SDR), i.e., distinct $A \in M_a, B \in M_b, C \in M_c$, then $abc \mid ABC$. | |
| Suppose an SDR does not exist. This implies overlaps between the sets. | |
| Case 2.1: $|M_b| \ge 2$. | |
| Then $|M_a| \ge 2$. Let $C_0 \in M_c$. Let $M'_a = M_a \setminus \{C_0\}, M'_b = M_b \setminus \{C_0\}$. Both are non-empty. | |
| If there exist $A \in M'_a, B \in M'_b$ such that $A \neq B$, then $A, B, C_0$ are distinct and we win. | |
| If not, $M'_a=M'_b=\{X\}$. This implies $|M_a| \le 2, |M_b| \le 2$. So $|M_a|=|M_b|=2$. | |
| $M_a=\{X, C_0\}, M_b=\{X, C_0\}$. | |
| $X, C_0$ are consecutive multiples of $a$ and $b$. So $|X-C_0|=a$ and $|X-C_0|=b$. $a=b$. Contradiction. | |
| Case 2.2: $|M_b|=1$. Let $M_b=\{B_0\}$. $c<2b$. | |
| Case 2.2.1: $|M_a| \ge 2$. | |
| Let $C_0 \in M_c$. | |
| If $B_0=C_0$. Let $X=B_0$. $X$ is multiple of $L_{bc}=\text{lcm}(b, c)$. | |
| There is $A \in M_a \setminus \{X\}$. $AX$ is multiple of $a L_{bc} = abc/g_{bc}$. | |
| We need $g_{bc}|Z$ for $Z \in S \setminus \{A, X\}$. | |
| $c \ge 2g_{bc}$. $|M_{g_{bc}}| \ge 2$. | |
| If $|M_{g_{bc}}| \ge 3$, we win. | |
| If $|M_{g_{bc}}|=2$. Then $c<3g_{bc}$. So $c=2g_{bc}$. Since $b<c$ and $g_{bc}|b$, $b=g_{bc}$. $c=2b$. Contradicts $c<2b$. | |
| If $B_0 \neq C_0$. If there is $A \in M_a \setminus \{B_0, C_0\}$, we win. | |
| If not, $M_a=\{B_0, C_0\}$. | |
| $B_0$ multiple of $L_{ab}$. $C_0$ multiple of $L_{ac}$. | |
| $B_0 C_0$ is multiple of $L_{ab} L_{ac} = a^2 bc / (g_{ab} g_{ac})$. | |
| Since $G=1$, $g_{ab}$ and $g_{ac}$ are coprime. So $g_{ab} g_{ac}$ divides $a$. | |
| $a^2 bc / (g_{ab} g_{ac}) = abc \cdot a/(g_{ab} g_{ac})$. This is a multiple of $abc$. | |
| We choose any third number $Z$. | |
| Case 2.2.2: $|M_a|=1$. Let $M_a=\{A_0\}$. $c<2a$. | |
| If $A_0, B_0, C_0$ are distinct, we win. | |
| If exactly two are equal. | |
| Suppose $A_0=B_0 \neq C_0$. Let $X=A_0=B_0$. $X$ multiple of $L_{ab}$. $C_0$ multiple of $c$. | |
| We need $g_{ab}|Z$. $g=g_{ab}$. $c>2g$. $|M_g| \ge 2$. | |
| If $|M_g| \ge 3$, we win. | |
| If $|M_g|=2$. $M_g=\{X, C_0\}$. $|X-C_0|=g$. | |
| $a=gA, b=gB$. $A<B$. $\text{gcd}(A, B)=1$. $G=1$ implies $\text{gcd}(g, c)=1$. | |
| $X=m L_{ab}=m gAB$. $C_0=X\pm g = (mAB\pm 1)g$. | |
| $c|C_0$. Since $\text{gcd}(c, g)=1$, $c|mAB\pm 1$. | |
| $c<2a=2gA$. | |
| If $m \ge 1$. $c \le mAB+1$. | |
| If $A=1$. $a=g$. $B \ge 2$. $c|mB\pm 1$. $c<2g$. | |
| $b=gB$. $a<b$ holds. $b<c$. $gB < 2g$. $B<2$. Contradiction. | |
| Suppose $A_0=C_0 \neq B_0$. Symmetric argument using $g_{ac}$. $c<2a$. | |
| If $B_0=C_0 \neq A_0$. Symmetric argument using $g_{bc}$. $c<2b$. | |
| If $A_0=B_0=C_0=X$. | |
| $X$ multiple of $L$. We need $H|YZ$. $H=g_{ab} g_{ac} g_{bc}$. | |
| Let $H_1=g_{ac}, H_2=g_{ab} g_{bc}$. | |
| We showed $|M_{H_1}| \ge 2$. Let $Y \in M_{H_1} \setminus \{X\}$. | |
| If we can find $Z \in M_{H_2} \setminus \{X, Y\}$. We win. | |
| If not, we analyze the size of $M_{H_1}$. | |
| If $|M_{H_1}| \ge 3$. Let $Y, Z \in M_{H_1} \setminus \{X\}$. $H_1^2|YZ$. | |
| We need $H_2|YZ/H_1^2$. | |
| Let's use the argument based on the size of $M_{H_1}$. | |
| $|M_{H_1}| = g_{bc} C'$. | |
| If $g_{bc} C' \ge 3$. We have $Y, Z$. | |
| $Y=X\pm k H_1, Z=X\pm m H_1$. | |
| $YZ = X^2 \pm X H_1 (k\pm m) + km H_1^2$. | |
| $H|X$. So $H_2|X$. $H_2|YZ$. | |
| If $g_{bc} C' = 2$. | |
| Case 2.2.2.1: $g_{bc}=2, C'=1$. $c=2g_{ac}$. $a=g_{ac}, b=2B'$. $g_{ac}$ is odd. | |
| $H_1=g_{ac}, H_2=2$. | |
| $|M_{H_1}|=2$. $M_{H_1}=\{X, Y\}$. $Y$ is odd. | |
| We need $2|YZ$. We need $Z$ even. | |
| $X$ is even. $c \ge 6$. $S$ contains at least 3 even numbers. | |
| We can find $Z$ even, $Z \neq X$. $Z \neq Y$ since $Y$ is odd. | |
| Case 2.2.2.2: $g_{bc}=1, C'=2$. $c=2g_{ac}$. $a=g_{ac}, b=B'$. | |
| $H_2=1$. Trivial. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment