-
Open a browser
# start an instance of firefox with selenium-webdriver driver = Selenium::WebDriver.for :firefox # :chrome -> chrome # :ie -> iexplore
- Go to a specified URL
| """ | |
| Generate PDF reports from data included in several Pandas DataFrames | |
| From pbpython.com | |
| """ | |
| from __future__ import print_function | |
| import pandas as pd | |
| import numpy as np | |
| import argparse | |
| from jinja2 import Environment, FileSystemLoader | |
| from weasyprint import HTML |
| # List unique values in a DataFrame column | |
| # h/t @makmanalp for the updated syntax! | |
| df['Column Name'].unique() | |
| # Convert Series datatype to numeric (will error if column has non-numeric values) | |
| # h/t @makmanalp | |
| pd.to_numeric(df['Column Name']) | |
| # Convert Series datatype to numeric, changing non-numeric values to NaN | |
| # h/t @makmanalp for the updated syntax! |
This configuration worked for me, hope it helps
It is based on: https://becominghuman.ai/deep-learning-gaming-build-with-nvidia-titan-xp-and-macbook-pro-with-thunderbolt2-5ceee7167f8b
and on: https://stackoverflow.com/questions/44744737/tensorflow-mac-os-gpu-support
| #Refer http://craiget.com/extracting-table-data-from-pdfs-with-ocr/ | |
| import Image, ImageOps | |
| import subprocess, sys, os, glob | |
| # minimum run of adjacent pixels to call something a line | |
| H_THRESH = 300 | |
| V_THRESH = 300 | |
| def get_hlines(pix, w, h): | |
| """Get start/end pixels of lines containing horizontal runs of at least THRESH black pix""" |