-
Open a browser
# start an instance of firefox with selenium-webdriver driver = Selenium::WebDriver.for :firefox # :chrome -> chrome # :ie -> iexplore
- Go to a specified URL
| """ | |
| Generate PDF reports from data included in several Pandas DataFrames | |
| From pbpython.com | |
| """ | |
| from __future__ import print_function | |
| import pandas as pd | |
| import numpy as np | |
| import argparse | |
| from jinja2 import Environment, FileSystemLoader | |
| from weasyprint import HTML |
| # List unique values in a DataFrame column | |
| # h/t @makmanalp for the updated syntax! | |
| df['Column Name'].unique() | |
| # Convert Series datatype to numeric (will error if column has non-numeric values) | |
| # h/t @makmanalp | |
| pd.to_numeric(df['Column Name']) | |
| # Convert Series datatype to numeric, changing non-numeric values to NaN | |
| # h/t @makmanalp for the updated syntax! |
| import sys | |
| with open(sys.argv[1],"rb") as file: | |
| file.seek(0) | |
| pdf = file.read() | |
| startmark = b"\xff\xd8" | |
| startfix = 0 | |
| endmark = b"\xff\xd9" | |
| endfix = 2 |
| import cv2 | |
| import numpy as np | |
| img = cv2.imread('path/to/img', 0) # 0 = grayscale | |
| gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
| edges = cv2.Canny(img,100,200) | |
| lines = cv2.HoughLines(edges,1,np.pi/180,200) | |
| for rho, theta in lines[0]: | |
| a = np.cos(theta) |
| # import the necessary packages | |
| from PIL import Image # get image from disk in PIL format | |
| import pytesseract # python "wrapper" of Google's Tesseract binaries | |
| import argparse # build command-line interfaces | |
| import cv2 # opencv-python | |
| import os # operating system | |
| # construct the argument parse and parse the arguments | |
| ap = argparse.ArgumentParser() |
| # import packages | |
| from PIL import Image | |
| import os | |
| import argparse # build command-line interfaces | |
| # construct the argument parse and parse the arguments | |
| ap = argparse.ArgumentParser() | |
| ap.add_argument("-d", | |
| "--directory", |
| import pandas as pd | |
| import pyperclip | |
| import io | |
| def frame_clipboard(): | |
| s = pyperclip.paste() | |
| clip_df = pd.read_table(io.StringIO(s)) | |
| return clip_df |
This configuration worked for me, hope it helps
It is based on: https://becominghuman.ai/deep-learning-gaming-build-with-nvidia-titan-xp-and-macbook-pro-with-thunderbolt2-5ceee7167f8b
and on: https://stackoverflow.com/questions/44744737/tensorflow-mac-os-gpu-support
| import pyautogui | |
| def mouse_now(): | |
| print('Press Ctrl-C to quit.') | |
| try: | |
| while True: | |
| # Get and print the mouse coordinates. | |
| x, y = pyautogui.position() | |
| positionStr = 'X: ' + str(x).rjust(4) + ' Y: ' + str(y).rjust(4) |