|
#Note: This model has the same sturcture of the AlexNet |
|
name: "WIDER_Baseline_CNN" |
|
input: "data" |
|
input_dim: [1,3,224,224] |
|
layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" |
|
convolution_param {num_output: 96 kernel_size: 11 stride: 4}} |
|
layer { name: "relu1" type: "ReLU" bottom: "conv1" top: "conv1"} |
|
layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" |
|
pooling_param {pool: MAX kernel_size: 3 stride: 2}} |
|
layer { name: "norm1" type: "LRN" bottom: "pool1" top: "norm1" |
|
lrn_param {local_size: 5 alpha: 0.0001 beta: 0.75}} |
|
layer { name: "conv2" type: "Convolution" bottom: "norm1" top: "conv2" |
|
convolution_param {num_output: 256 pad: 2 kernel_size: 5 group: 2}} |
|
layer { name: "relu2" type: "ReLU" bottom: "conv2" top: "conv2"} |
|
layer { name: "pool2" type: "Pooling" bottom: "conv2" top: "pool2" |
|
pooling_param {pool: MAX kernel_size: 3 stride: 2}} |
|
layer { name: "norm2" type: "LRN" bottom: "pool2" top: "norm2" |
|
lrn_param {local_size: 5 alpha: 0.0001 beta: 0.75}} |
|
layer { name: "conv3" type: "Convolution" bottom: "norm2" top: "conv3" |
|
convolution_param {num_output: 384 pad: 1 kernel_size: 3}} |
|
layer { name: "relu3" type: "ReLU" bottom: "conv3" top: "conv3"} |
|
layer { name: "conv4" type: "Convolution" bottom: "conv3" top: "conv4" |
|
convolution_param {num_output: 384 pad: 1 kernel_size: 3 group: 2}} |
|
layer { name: "relu4" type: "ReLU" bottom: "conv4" top: "conv4"} |
|
layer { name: "conv5" type: "Convolution" bottom: "conv4" top: "conv5" |
|
convolution_param {num_output: 256 pad: 1 kernel_size: 3 group: 2}} |
|
layer { name: "relu5" type: "ReLU" bottom: "conv5" top: "conv5"} |
|
layer { name: "pool5" type: "Pooling" bottom: "conv5" top: "pool5" |
|
pooling_param {pool: MAX kernel_size: 3 stride: 2 }} |
|
layer { name: "fc6" type: "InnerProduct" bottom: "pool5" top: "fc6" |
|
inner_product_param {num_output: 4096}} |
|
layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6"} |
|
layer { name: "drop6" type: "Dropout" bottom: "fc6" top: "fc6" |
|
dropout_param {dropout_ratio: 0.5}} |
|
layer { name: "fc7" type: "InnerProduct" bottom: "fc6" top: "fc7" |
|
inner_product_param {num_output: 4096}} |
|
layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7"} |
|
layer { name: "drop7" type: "Dropout" bottom: "fc7" top: "fc7" |
|
dropout_param {dropout_ratio: 0.5}} |
|
layer { name: "fc8_event" type: "InnerProduct" bottom: "fc7" top: "fc8" |
|
inner_product_param {num_output: 61}} |
|
layer { name: "prob" type: "Softmax" bottom: "fc8" top: "prob_raw"} |