Created
January 1, 2026 07:14
-
-
Save yjwong/bb025503d8c3802cbb0c153811c8e7cf to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Execute a skill within the main conversation | |
| <skills_instructions> | |
| When users ask you to perform tasks, check if any of the available skills below can help complete the task more effectively. Skills provide specialized capabilities and domain knowledge. | |
| When users ask you to run a "slash command" or reference "/<something>" (e.g., "/commit", "/review-pr"), they are referring to a skill. Use this tool to invoke the corresponding skill. | |
| <example> | |
| User: "run /commit" | |
| Assistant: [Calls Skill tool with skill: "commit"] | |
| </example> | |
| How to invoke: | |
| - Use this tool with the skill name and optional arguments | |
| - Examples: | |
| - `skill: "pdf"` - invoke the pdf skill | |
| - `skill: "commit", args: "-m 'Fix bug'"` - invoke with arguments | |
| - `skill: "review-pr", args: "123"` - invoke with arguments | |
| - `skill: "ms-office-suite:pdf"` - invoke using fully qualified name | |
| Important: | |
| - When a skill is relevant, you must invoke this tool IMMEDIATELY as your first action | |
| - NEVER just announce or mention a skill in your text response without actually calling this tool | |
| - This is a BLOCKING REQUIREMENT: invoke the relevant Skill tool BEFORE generating any other response about the task | |
| - Only use skills listed in <available_skills> below | |
| - Do not invoke a skill that is already running | |
| - Do not use this tool for built-in CLI commands (like /help, /clear, etc.) | |
| </skills_instructions> | |
| <available_skills> | |
| <skill> | |
| <name> | |
| document-skills:xlsx | |
| </name> | |
| <description> | |
| Comprehensive spreadsheet creation, editing, and analysis with support for formulas, formatting, data analysis, and visualization. When Claude needs to work with spreadsheets (.xlsx, .xlsm, .csv, .tsv, etc) for: (1) Creating new spreadsheets with formulas and formatting, (2) Reading or analyzing data, (3) Modify existing spreadsheets while preserving formulas, (4) Data analysis and visualization in spreadsheets, or (5) Recalculating formulas (plugin:document-skills@anthropic-agent-skills) | |
| </description> | |
| <location> | |
| plugin | |
| </location> | |
| </skill> | |
| <skill> | |
| <name> | |
| document-skills:docx | |
| </name> | |
| <description> | |
| Comprehensive document creation, editing, and analysis with support for tracked changes, comments, formatting preservation, and text extraction. When Claude needs to work with professional documents (.docx files) for: (1) Creating new documents, (2) Modifying or editing content, (3) Working with tracked changes, (4) Adding comments, or any other document tasks (plugin:document-skills@anthropic-agent-skills) | |
| </description> | |
| <location> | |
| plugin | |
| </location> | |
| </skill> | |
| <skill> | |
| <name> | |
| document-skills:pptx | |
| </name> | |
| <description> | |
| Presentation creation, editing, and analysis. When Claude needs to work with presentations (.pptx files) for: (1) Creating new presentations, (2) Modifying or editing content, (3) Working with layouts, (4) Adding comments or speaker notes, or any other presentation tasks (plugin:document-skills@anthropic-agent-skills) | |
| </description> | |
| <location> | |
| plugin | |
| </location> | |
| </skill> | |
| <skill> | |
| <name> | |
| document-skills:pdf | |
| </name> | |
| <description> | |
| Comprehensive PDF manipulation toolkit for extracting text and tables, creating new PDFs, merging/splitting documents, and handling forms. When Claude needs to fill in a PDF form or programmatically process, generate, or analyze PDF documents at scale. (plugin:document-skills@anthropic-agent-skills) | |
| </description> | |
| <location> | |
| plugin | |
| </location> | |
| </skill> | |
| <skill> | |
| <name> | |
| frontend-design:frontend-design | |
| </name> | |
| <description> | |
| Create distinctive, production-grade frontend interfaces with high design quality. Use this skill when the user asks to build web components, pages, or applications. Generates creative, polished code that avoids generic AI aesthetics. (plugin:frontend-design@claude-plugins-official) | |
| </description> | |
| <location> | |
| plugin | |
| </location> | |
| </skill> | |
| </available_skills> | |
| --- | |
| JSON Schema for Input Parameters: | |
| { | |
| "$schema": "http://json-schema.org/draft-07/schema#", | |
| "additionalProperties": false, | |
| "properties": { | |
| "args": { | |
| "description": "Optional arguments for the skill", | |
| "type": "string" | |
| }, | |
| "skill": { | |
| "description": "The skill name. E.g., \"commit\", \"review-pr\", or \"pdf\"", | |
| "type": "string" | |
| } | |
| }, | |
| "required": ["skill"], | |
| "type": "object" | |
| } | |
| --- | |
| Output Parameters: | |
| The Skill tool does not have explicitly defined output parameters in its schema. | |
| The output depends on the specific skill being invoked and what that skill returns. | |
| --- | |
| Example Output (invoking "document-skills:xlsx"): | |
| Base directory for this skill: /home/yjwong/.claude/plugins/cache/anthropic-agent-skills/document-skills/0f77e501e650/document-skills/xlsx | |
| # Requirements for Outputs | |
| ## All Excel files | |
| ### Zero Formula Errors | |
| - Every Excel model MUST be delivered with ZERO formula errors (#REF!, #DIV/0!, #VALUE!, #N/A, #NAME?) | |
| ### Preserve Existing Templates (when updating templates) | |
| - Study and EXACTLY match existing format, style, and conventions when modifying files | |
| - Never impose standardized formatting on files with established patterns | |
| - Existing template conventions ALWAYS override these guidelines | |
| ## Financial models | |
| ### Color Coding Standards | |
| Unless otherwise stated by the user or existing template | |
| #### Industry-Standard Color Conventions | |
| - **Blue text (RGB: 0,0,255)**: Hardcoded inputs, and numbers users will change for scenarios | |
| - **Black text (RGB: 0,0,0)**: ALL formulas and calculations | |
| - **Green text (RGB: 0,128,0)**: Links pulling from other worksheets within same workbook | |
| - **Red text (RGB: 255,0,0)**: External links to other files | |
| - **Yellow background (RGB: 255,255,0)**: Key assumptions needing attention or cells that need to be updated | |
| ### Number Formatting Standards | |
| #### Required Format Rules | |
| - **Years**: Format as text strings (e.g., "2024" not "2,024") | |
| - **Currency**: Use $#,##0 format; ALWAYS specify units in headers ("Revenue ($mm)") | |
| - **Zeros**: Use number formatting to make all zeros "-", including percentages (e.g., "$#,##0;($#,##0);-") | |
| - **Percentages**: Default to 0.0% format (one decimal) | |
| - **Multiples**: Format as 0.0x for valuation multiples (EV/EBITDA, P/E) | |
| - **Negative numbers**: Use parentheses (123) not minus -123 | |
| ### Formula Construction Rules | |
| #### Assumptions Placement | |
| - Place ALL assumptions (growth rates, margins, multiples, etc.) in separate assumption cells | |
| - Use cell references instead of hardcoded values in formulas | |
| - Example: Use =B5*(1+$B$6) instead of =B5*1.05 | |
| #### Formula Error Prevention | |
| - Verify all cell references are correct | |
| - Check for off-by-one errors in ranges | |
| - Ensure consistent formulas across all projection periods | |
| - Test with edge cases (zero values, negative numbers) | |
| - Verify no unintended circular references | |
| #### Documentation Requirements for Hardcodes | |
| - Comment or in cells beside (if end of table). Format: "Source: [System/Document], [Date], [Specific Reference], [URL if applicable]" | |
| - Examples: | |
| - "Source: Company 10-K, FY2024, Page 45, Revenue Note, [SEC EDGAR URL]" | |
| - "Source: Company 10-Q, Q2 2025, Exhibit 99.1, [SEC EDGAR URL]" | |
| - "Source: Bloomberg Terminal, 8/15/2025, AAPL US Equity" | |
| - "Source: FactSet, 8/20/2025, Consensus Estimates Screen" | |
| # XLSX creation, editing, and analysis | |
| ## Overview | |
| A user may ask you to create, edit, or analyze the contents of an .xlsx file. You have different tools and workflows available for different tasks. | |
| ## Important Requirements | |
| **LibreOffice Required for Formula Recalculation**: You can assume LibreOffice is installed for recalculating formula values using the `recalc.py` script. The script automatically configures LibreOffice on first run | |
| ## Reading and analyzing data | |
| ### Data analysis with pandas | |
| For data analysis, visualization, and basic operations, use **pandas** which provides powerful data manipulation capabilities: | |
| ```python | |
| import pandas as pd | |
| # Read Excel | |
| df = pd.read_excel('file.xlsx') # Default: first sheet | |
| all_sheets = pd.read_excel('file.xlsx', sheet_name=None) # All sheets as dict | |
| # Analyze | |
| df.head() # Preview data | |
| df.info() # Column info | |
| df.describe() # Statistics | |
| # Write Excel | |
| df.to_excel('output.xlsx', index=False) | |
| ``` | |
| ## Excel File Workflows | |
| ## CRITICAL: Use Formulas, Not Hardcoded Values | |
| **Always use Excel formulas instead of calculating values in Python and hardcoding them.** This ensures the spreadsheet remains dynamic and updateable. | |
| ### ❌ WRONG - Hardcoding Calculated Values | |
| ```python | |
| # Bad: Calculating in Python and hardcoding result | |
| total = df['Sales'].sum() | |
| sheet['B10'] = total # Hardcodes 5000 | |
| # Bad: Computing growth rate in Python | |
| growth = (df.iloc[-1]['Revenue'] - df.iloc[0]['Revenue']) / df.iloc[0]['Revenue'] | |
| sheet['C5'] = growth # Hardcodes 0.15 | |
| # Bad: Python calculation for average | |
| avg = sum(values) / len(values) | |
| sheet['D20'] = avg # Hardcodes 42.5 | |
| ``` | |
| ### ✅ CORRECT - Using Excel Formulas | |
| ```python | |
| # Good: Let Excel calculate the sum | |
| sheet['B10'] = '=SUM(B2:B9)' | |
| # Good: Growth rate as Excel formula | |
| sheet['C5'] = '=(C4-C2)/C2' | |
| # Good: Average using Excel function | |
| sheet['D20'] = '=AVERAGE(D2:D19)' | |
| ``` | |
| This applies to ALL calculations - totals, percentages, ratios, differences, etc. The spreadsheet should be able to recalculate when source data changes. | |
| ## Common Workflow | |
| 1. **Choose tool**: pandas for data, openpyxl for formulas/formatting | |
| 2. **Create/Load**: Create new workbook or load existing file | |
| 3. **Modify**: Add/edit data, formulas, and formatting | |
| 4. **Save**: Write to file | |
| 5. **Recalculate formulas (MANDATORY IF USING FORMULAS)**: Use the recalc.py script | |
| ```bash | |
| python recalc.py output.xlsx | |
| ``` | |
| 6. **Verify and fix any errors**: | |
| - The script returns JSON with error details | |
| - If `status` is `errors_found`, check `error_summary` for specific error types and locations | |
| - Fix the identified errors and recalculate again | |
| - Common errors to fix: | |
| - `#REF!`: Invalid cell references | |
| - `#DIV/0!`: Division by zero | |
| - `#VALUE!`: Wrong data type in formula | |
| - `#NAME?`: Unrecognized formula name | |
| ### Creating new Excel files | |
| ```python | |
| # Using openpyxl for formulas and formatting | |
| from openpyxl import Workbook | |
| from openpyxl.styles import Font, PatternFill, Alignment | |
| wb = Workbook() | |
| sheet = wb.active | |
| # Add data | |
| sheet['A1'] = 'Hello' | |
| sheet['B1'] = 'World' | |
| sheet.append(['Row', 'of', 'data']) | |
| # Add formula | |
| sheet['B2'] = '=SUM(A1:A10)' | |
| # Formatting | |
| sheet['A1'].font = Font(bold=True, color='FF0000') | |
| sheet['A1'].fill = PatternFill('solid', start_color='FFFF00') | |
| sheet['A1'].alignment = Alignment(horizontal='center') | |
| # Column width | |
| sheet.column_dimensions['A'].width = 20 | |
| wb.save('output.xlsx') | |
| ``` | |
| ### Editing existing Excel files | |
| ```python | |
| # Using openpyxl to preserve formulas and formatting | |
| from openpyxl import load_workbook | |
| # Load existing file | |
| wb = load_workbook('existing.xlsx') | |
| sheet = wb.active # or wb['SheetName'] for specific sheet | |
| # Working with multiple sheets | |
| for sheet_name in wb.sheetnames: | |
| sheet = wb[sheet_name] | |
| print(f"Sheet: {sheet_name}") | |
| # Modify cells | |
| sheet['A1'] = 'New Value' | |
| sheet.insert_rows(2) # Insert row at position 2 | |
| sheet.delete_cols(3) # Delete column 3 | |
| # Add new sheet | |
| new_sheet = wb.create_sheet('NewSheet') | |
| new_sheet['A1'] = 'Data' | |
| wb.save('modified.xlsx') | |
| ``` | |
| ## Recalculating formulas | |
| Excel files created or modified by openpyxl contain formulas as strings but not calculated values. Use the provided `recalc.py` script to recalculate formulas: | |
| ```bash | |
| python recalc.py <excel_file> [timeout_seconds] | |
| ``` | |
| Example: | |
| ```bash | |
| python recalc.py output.xlsx 30 | |
| ``` | |
| The script: | |
| - Automatically sets up LibreOffice macro on first run | |
| - Recalculates all formulas in all sheets | |
| - Scans ALL cells for Excel errors (#REF!, #DIV/0!, etc.) | |
| - Returns JSON with detailed error locations and counts | |
| - Works on both Linux and macOS | |
| ## Formula Verification Checklist | |
| Quick checks to ensure formulas work correctly: | |
| ### Essential Verification | |
| - [ ] **Test 2-3 sample references**: Verify they pull correct values before building full model | |
| - [ ] **Column mapping**: Confirm Excel columns match (e.g., column 64 = BL, not BK) | |
| - [ ] **Row offset**: Remember Excel rows are 1-indexed (DataFrame row 5 = Excel row 6) | |
| ### Common Pitfalls | |
| - [ ] **NaN handling**: Check for null values with `pd.notna()` | |
| - [ ] **Far-right columns**: FY data often in columns 50+ | |
| - [ ] **Multiple matches**: Search all occurrences, not just first | |
| - [ ] **Division by zero**: Check denominators before using `/` in formulas (#DIV/0!) | |
| - [ ] **Wrong references**: Verify all cell references point to intended cells (#REF!) | |
| - [ ] **Cross-sheet references**: Use correct format (Sheet1!A1) for linking sheets | |
| ### Formula Testing Strategy | |
| - [ ] **Start small**: Test formulas on 2-3 cells before applying broadly | |
| - [ ] **Verify dependencies**: Check all cells referenced in formulas exist | |
| - [ ] **Test edge cases**: Include zero, negative, and very large values | |
| ### Interpreting recalc.py Output | |
| The script returns JSON with error details: | |
| ```json | |
| { | |
| "status": "success", // or "errors_found" | |
| "total_errors": 0, // Total error count | |
| "total_formulas": 42, // Number of formulas in file | |
| "error_summary": { // Only present if errors found | |
| "#REF!": { | |
| "count": 2, | |
| "locations": ["Sheet1!B5", "Sheet1!C10"] | |
| } | |
| } | |
| } | |
| ``` | |
| ## Best Practices | |
| ### Library Selection | |
| - **pandas**: Best for data analysis, bulk operations, and simple data export | |
| - **openpyxl**: Best for complex formatting, formulas, and Excel-specific features | |
| ### Working with openpyxl | |
| - Cell indices are 1-based (row=1, column=1 refers to cell A1) | |
| - Use `data_only=True` to read calculated values: `load_workbook('file.xlsx', data_only=True)` | |
| - **Warning**: If opened with `data_only=True` and saved, formulas are replaced with values and permanently lost | |
| - For large files: Use `read_only=True` for reading or `write_only=True` for writing | |
| - Formulas are preserved but not evaluated - use recalc.py to update values | |
| ### Working with pandas | |
| - Specify data types to avoid inference issues: `pd.read_excel('file.xlsx', dtype={'id': str})` | |
| - For large files, read specific columns: `pd.read_excel('file.xlsx', usecols=['A', 'C', 'E'])` | |
| - Handle dates properly: `pd.read_excel('file.xlsx', parse_dates=['date_column'])` | |
| ## Code Style Guidelines | |
| **IMPORTANT**: When generating Python code for Excel operations: | |
| - Write minimal, concise Python code without unnecessary comments | |
| - Avoid verbose variable names and redundant operations | |
| - Avoid unnecessary print statements | |
| **For Excel files themselves**: | |
| - Add comments to cells with complex formulas or important assumptions | |
| - Document data sources for hardcoded values | |
| - Include notes for key calculations and model sections |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment