Created
April 2, 2017 04:00
-
-
Save y-mitsui/0ea7dd1e3ee7b50cbede700921e4d108 to your computer and use it in GitHub Desktop.
stan_ep1
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pystan | |
| import numpy as np | |
| stan_code = """ | |
| data { | |
| int<lower=0> N; | |
| real<lower=0> x[N]; | |
| } | |
| parameters { | |
| real mu; | |
| real<lower=0> sigma; | |
| } | |
| model { | |
| for(n in 1:N) { | |
| x[n] ~ normal(mu, sigma); | |
| } | |
| } | |
| generated quantities { | |
| real<lower=0, upper=1> mu_over; | |
| real<lower=0, upper=1> mu_over2; | |
| real es; | |
| real<lower=0, upper=1> es_over; | |
| mu_over <- step(mu - 2500); | |
| mu_over2 <- step(mu - 3000); | |
| es <- (mu - 2500) / sigma; | |
| es_over <- step(es-0.8); | |
| } | |
| """ | |
| sample = [3060, 2840, 1780, 3280, 3550, 2450, 2200, 3070, 2100, 4100, | |
| 3630, 3060, 3280, 1870, 2980, 3120, 2150, 3830, 4300, 1880] | |
| stan_model = pystan.StanModel(model_code=stan_code) | |
| print np.mean(sample) | |
| op = stan_model.sampling(data=dict(x=sample, N=len(sample)), chains=1, iter=10000) | |
| print op |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment