Created
January 16, 2026 19:59
-
-
Save ximeg/d6a2d156281ca2724530ae5b4ded0ac0 to your computer and use it in GitHub Desktop.
waveform thresholding and histogram building to characterize jitter
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pandas as pd | |
| data_file = '../data1000/10us_ALEX_jitter.parquet' | |
| df = pd.read_parquet(data_file) | |
| df | |
| thr = 2.5 | |
| df1 = df.query('rep <= 1000').query('channel == "Camera" and (140 <= time <= 160)').sort_values(['rep', 'channel', 'line', 'time']) | |
| df1 = df1.reset_index() | |
| prev_v = df1.groupby(['rep', 'channel', 'line'])['voltage'].shift(1) | |
| mask = (prev_v < thr) & (df1['voltage'] >= thr) | |
| cross = df1.loc[mask, ['rep', 'channel', 'line', 'time']] \ | |
| .rename(columns={'time': 't_cross'}) | |
| cross | |
| p = ( | |
| ggplot(cross.assign(t_cross = lambda df: df.t_cross), aes(x='t_cross')) | |
| + geom_histogram(bins=20) | |
| + labs(x='Crossing time', y='Count') | |
| + theme_classic() | |
| + coord_cartesian(xlim = (72, 76)) | |
| + theme(figure_size=(6, 1.5), axis_line_x = element_blank(), panel_grid_major_x= element_line(color = "darkgrey", linetype = "solid", size = 0.5)) | |
| + xlab("time, µs") | |
| ) | |
| p5, p95 = cross['t_cross'].quantile([0.05, 0.95]) | |
| width_90 = p95 - p5 | |
| width_90 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment