We show that for all integers
then
We show that for all integers
then
| import Mathlib.Data.Nat.Basic | |
| import Mathlib.Tactic | |
| import Mathlib.Data.Real.Basic | |
| import Mathlib.Algebra.Order.Field.Basic | |
| import Mathlib.Algebra.Order.Field.Rat | |
| import Mathlib.Analysis.SpecialFunctions.Exp | |
| import Mathlib.Analysis.SpecialFunctions.Pow.Asymptotics | |
| import Mathlib.Analysis.SpecialFunctions.PolynomialExp | |
| import Mathlib.Analysis.SpecificLimits.Normed | |
| import Mathlib.Order.Filter.AtTopBot.Basic |
| import Mathlib.Data.List.Sort | |
| import Mathlib.Data.List.Basic | |
| import Mathlib.Data.Nat.Digits.Defs | |
| import Mathlib.Algebra.BigOperators.Group.Finset.Defs | |
| import Mathlib.Analysis.SpecialFunctions.Log.Basic | |
| import Mathlib.Algebra.Order.Archimedean.Basic | |
| import Mathlib.Data.Set.Finite.Basic | |
| import Mathlib.Data.Finset.Sort | |
| import Mathlib.Algebra.Order.BigOperators.Group.Finset | |
| import Mathlib.Algebra.Order.BigOperators.Group.List |
| import torch | |
| import numpy as np | |
| from matplotlib import pyplot as plt | |
| torch.set_printoptions(precision=10) | |
| class ResidualBlock(torch.nn.Module): | |
| def __init__(self, dims, bottleneck): | |
| super(ResidualBlock, self).__init__() | |
| self.linear1 = torch.nn.Linear(dims, bottleneck) |
| #pragma once | |
| #include <iostream> | |
| #include <algorithm> | |
| #include <vector> | |
| #include <unordered_map> | |
| #include <string> | |
| #include <variant> | |
| using Key = std::string; | |
| using Value = std::variant<std::string, double, bool>; |
| root = "cargo" | |
| [packages] | |
| [packages.bitflags] | |
| dependencies = [] | |
| path = "/Users/winger/.cargo/registry/src/github.com-1ecc6299db9ec823/bitflags-0.1.1" | |
| version = "0.1.1" | |
| [packages.cargo] |
| s = input() | |
| prevs = dict() | |
| a = [] | |
| for i in range(len(s)): | |
| if s[i] in prevs: | |
| a.append(i - prevs[s[i]]) | |
| else: | |
| a.append(i + 1) | |
| prevs[s[i]] = i |