Skip to content

Instantly share code, notes, and snippets.

View winger's full-sized avatar

Vladislav Isenbaev winger

  • Facebook
  • Mountain View
View GitHub Profile

A Gaussian Lower Bound for a Binomial Right Tail

We show that for all integers $k \ge 1$ and all $p \in (0, \tfrac{1}{2})$, if

$$n := 2k,\qquad \sigma^2 := p(1-p),\qquad z := \frac{(1/2 - p)\sqrt{2k}}{\sigma},$$

then

$$1 - \Phi(z) + \frac{1}{2} \binom{2k}{k},\sigma^{2k} ;\le; \mathbb{P}\bigl(\mathrm{Bin}(2k,p)\ge k\bigr),$$

import Mathlib.Data.Nat.Basic
import Mathlib.Tactic
import Mathlib.Data.Real.Basic
import Mathlib.Algebra.Order.Field.Basic
import Mathlib.Algebra.Order.Field.Rat
import Mathlib.Analysis.SpecialFunctions.Exp
import Mathlib.Analysis.SpecialFunctions.Pow.Asymptotics
import Mathlib.Analysis.SpecialFunctions.PolynomialExp
import Mathlib.Analysis.SpecificLimits.Normed
import Mathlib.Order.Filter.AtTopBot.Basic
import Mathlib.Data.List.Sort
import Mathlib.Data.List.Basic
import Mathlib.Data.Nat.Digits.Defs
import Mathlib.Algebra.BigOperators.Group.Finset.Defs
import Mathlib.Analysis.SpecialFunctions.Log.Basic
import Mathlib.Algebra.Order.Archimedean.Basic
import Mathlib.Data.Set.Finite.Basic
import Mathlib.Data.Finset.Sort
import Mathlib.Algebra.Order.BigOperators.Group.Finset
import Mathlib.Algebra.Order.BigOperators.Group.List
import torch
import numpy as np
from matplotlib import pyplot as plt
torch.set_printoptions(precision=10)
class ResidualBlock(torch.nn.Module):
def __init__(self, dims, bottleneck):
super(ResidualBlock, self).__init__()
self.linear1 = torch.nn.Linear(dims, bottleneck)
#pragma once
#include <iostream>
#include <algorithm>
#include <vector>
#include <unordered_map>
#include <string>
#include <variant>
using Key = std::string;
using Value = std::variant<std::string, double, bool>;
root = "cargo"
[packages]
[packages.bitflags]
dependencies = []
path = "/Users/winger/.cargo/registry/src/github.com-1ecc6299db9ec823/bitflags-0.1.1"
version = "0.1.1"
[packages.cargo]
s = input()
prevs = dict()
a = []
for i in range(len(s)):
if s[i] in prevs:
a.append(i - prevs[s[i]])
else:
a.append(i + 1)
prevs[s[i]] = i