Skip to content

Instantly share code, notes, and snippets.

@willccbb
Last active January 18, 2026 09:52
Show Gist options
  • Select an option

  • Save willccbb/4676755236bb08cab5f4e54a0475d6fb to your computer and use it in GitHub Desktop.

Select an option

Save willccbb/4676755236bb08cab5f4e54a0475d6fb to your computer and use it in GitHub Desktop.
GRPO Llama-1B
# train_grpo.py
#
# See https://github.com/willccbb/verifiers for ongoing developments
#
"""
citation:
@misc{brown2025grpodemo,
title={Granular Format Rewards for Eliciting Mathematical Reasoning Capabilities in Small Language Models},
author={Brown, William},
howpublished={\url{https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475d6fb}},
date = {2025-01-25},
note = {GitHub Gist}
}
"""
import re
import torch
from datasets import load_dataset, Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import LoraConfig
from trl import GRPOConfig, GRPOTrainer
# Load and prep dataset
SYSTEM_PROMPT = """
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
XML_COT_FORMAT = """\
<reasoning>
{reasoning}
</reasoning>
<answer>
{answer}
</answer>
"""
def extract_xml_answer(text: str) -> str:
answer = text.split("<answer>")[-1]
answer = answer.split("</answer>")[0]
return answer.strip()
def extract_hash_answer(text: str) -> str | None:
if "####" not in text:
return None
return text.split("####")[1].strip().replace(",", "").replace("$", "")
# uncomment middle messages for 1-shot prompting
def get_gsm8k_questions(split = "train") -> Dataset:
data = load_dataset('openai/gsm8k', 'main')[split] # type: ignore
data = data.map(lambda x: { # type: ignore
'prompt': [
{'role': 'system', 'content': SYSTEM_PROMPT},
#{'role': 'user', 'content': 'What is the largest single-digit prime number?'},
#{'role': 'assistant', 'content': XML_COT_FORMAT.format(
# reasoning="9 is divisble by 3 and 8 is divisible by 2, but 7 is prime.",
# answer="7"
#)},
{'role': 'user', 'content': x['question']}
],
'answer': extract_hash_answer(x['answer'])
}) # type: ignore
return data # type: ignore
dataset = get_gsm8k_questions()
# Reward functions
def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[float]:
responses = [completion[0]['content'] for completion in completions]
q = prompts[0][-1]['content']
extracted_responses = [extract_xml_answer(r) for r in responses]
print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}")
return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]
def int_reward_func(completions, **kwargs) -> list[float]:
responses = [completion[0]['content'] for completion in completions]
extracted_responses = [extract_xml_answer(r) for r in responses]
return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
def strict_format_reward_func(completions, **kwargs) -> list[float]:
"""Reward function that checks if the completion has a specific format."""
pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$"
responses = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, r, flags=re.DOTALL) for r in responses]
return [0.5 if match else 0.0 for match in matches]
def soft_format_reward_func(completions, **kwargs) -> list[float]:
"""Reward function that checks if the completion has a specific format."""
pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>"
responses = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, r, flags=re.DOTALL) for r in responses]
return [0.5 if match else 0.0 for match in matches]
def count_xml(text) -> float:
count = 0.0
if text.count("<reasoning>\n") == 1:
count += 0.125
if text.count("\n</reasoning>\n") == 1:
count += 0.125
if text.count("\n<answer>\n") == 1:
count += 0.125
count -= len(text.split("\n</answer>\n")[-1])*0.001
if text.count("\n</answer>") == 1:
count += 0.125
count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001
return count
def xmlcount_reward_func(completions, **kwargs) -> list[float]:
contents = [completion[0]["content"] for completion in completions]
return [count_xml(c) for c in contents]
#model_name = "meta-llama/Llama-3.2-1B-Instruct"
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
if "Llama" in model_name:
output_dir = "outputs/Llama-1B-GRPO"
run_name = "Llama-1B-GRPO-gsm8k"
else:
output_dir="outputs/Qwen-1.5B-GRPO"
run_name="Qwen-1.5B-GRPO-gsm8k"
training_args = GRPOConfig(
output_dir=output_dir,
run_name=run_name,
learning_rate=5e-6,
adam_beta1 = 0.9,
adam_beta2 = 0.99,
weight_decay = 0.1,
warmup_ratio = 0.1,
lr_scheduler_type='cosine',
logging_steps=1,
bf16=True,
per_device_train_batch_size=1,
gradient_accumulation_steps=4,
num_generations=16,
max_prompt_length=256,
max_completion_length=786,
num_train_epochs=1,
save_steps=100,
max_grad_norm=0.1,
report_to="wandb",
log_on_each_node=False,
)
peft_config = LoraConfig(
r=16,
lora_alpha=64,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "down_proj", "gate_proj"],
task_type="CAUSAL_LM",
lora_dropout=0.05,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map=None
).to("cuda")
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
# use peft at your own risk; not working for me with multi-GPU training
trainer = GRPOTrainer(
model=model,
processing_class=tokenizer,
reward_funcs=[
xmlcount_reward_func,
soft_format_reward_func,
strict_format_reward_func,
int_reward_func,
correctness_reward_func],
args=training_args,
train_dataset=dataset,
#peft_config=peft_config
)
trainer.train()
@NickyDark1
Copy link

Hola, ¿alguien ha conseguido que funcione el modelo de llama? Pregunto porque intenté ejecutarlo, pero no formateó la respuesta correctamente (lo cual es un problema dado cómo se calculan las funciones de recompensa). Logré que funcionara mejor ejecutando el modelo de instrucción de parámetros 3B, pero me preguntaba si también debería funcionar con el modelo de parámetros 1B.

Yo, admito, solo entrené el modelo de parámetro 1B durante ~30 pasos (nuevamente, todas las recompensas fueron cero para los 30 pasos) antes de cambiar al modelo de parámetro 3B.

¡Buen trabajo también, Will!

https://huggingface.co/NickyNicky/Llama-1B-GRPO_Final

132 steps

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment