Skip to content

Instantly share code, notes, and snippets.

@victorhg
Created August 4, 2025 17:10
Show Gist options
  • Select an option

  • Save victorhg/4e652479b057bc4e1ccf67608e262911 to your computer and use it in GitHub Desktop.

Select an option

Save victorhg/4e652479b057bc4e1ccf67608e262911 to your computer and use it in GitHub Desktop.
Reading resources for Neural Networks and Deep Learning
Book Reference: _Goodfellow, I., Bengio, Y, & Courville, A. (2016). Deep Learning. MIT Press._

Neural Networks and Deep Learning

Module 1: Deep Learning with TensorFlow and PyTorch Fundamentals

_Goodfellow, I., Bengio, Y, & Courville, A. (2016). Deep Learning. MIT Press.

Recommended Readings

Here are some suggested resources for learning about developing and implementing math operations of tensors in TensorFlow and PyTorch:

Required Media

![[Machine Learning Study Resources]]

Module 2: Artificial Neural Networks

_Goodfellow, I., Bengio, Y, & Courville, A. (2016). Deep Learning. MIT Press.

Required Media

Module 3: Recurrent Neural Networks

_Goodfellow, I., Bengio, Y, & Courville, A. (2016). Deep Learning. MIT Press.

Required Media

Module 4: Convolutional Neural Networks

_Goodfellow, I., Bengio, Y, & Courville, A. (2016). Deep Learning. MIT Press.

Required Media

Module 5: Natural Language Processing

_Goodfellow, I., Bengio, Y, & Courville, A. (2016). Deep Learning. MIT Press.

Required Media

Watch the Word Vector Representations: word2vec Watch the Word Embedding and Word2Vec

Module 6: Autoencoders

_Goodfellow, I., Bengio, Y, & Courville, A. (2016). Deep Learning. MIT Press.

Required Media

Module 7: Logistic Regression

Required Media

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment