Skip to content

Instantly share code, notes, and snippets.

@theGOTOguy
Created January 12, 2026 19:20
Show Gist options
  • Select an option

  • Save theGOTOguy/eb635923afd32e78aabef18e753147b8 to your computer and use it in GitHub Desktop.

Select an option

Save theGOTOguy/eb635923afd32e78aabef18e753147b8 to your computer and use it in GitHub Desktop.
AtmoSpec with ORCA 6.1.1 (no orca_startup)
*****************
* O R C A *
*****************
#,
###
####
#####
######
########,
,,################,,,,,
,,#################################,,
,,##########################################,,
,#########################################, ''#####,
,#############################################,, '####,
,##################################################,,,,####,
,###########'''' ''''###############################
,#####'' ,,,,##########,,,, '''####''' '####
,##' ,,,,###########################,,, '##
' ,,###'''' '''############,,,
,,##'' '''############,,,, ,,,,,,###''
,#'' '''#######################'''
' ''''####''''
,#######, #######, ,#######, ##
,#' '#, ## ## ,#' '#, #''# ,####, ,#,
## ## ## ,#' ## #' '# #' ,# #
## ## ####### ## ,######, #####, #
'#, ,#' ## ## '#, ,#' ,# #, #, # #
'#######' ## ## '#######' #' '# '####' # #
#########################################################
# -***- #
# Department of theory and spectroscopy #
# #
# Frank Neese #
# #
# Directorship, Architecture, Infrastructure #
# SHARK, DRIVERS #
# Core code/Algorithms in most modules #
# #
# Max Planck Institute fuer Kohlenforschung #
# Kaiser Wilhelm Platz 1 #
# D-45470 Muelheim/Ruhr #
# Germany #
# #
# All rights reserved #
# -***- #
#########################################################
Program Version 6.1.1 - RELEASE -
(GIT: $487d211c$)
($2025-11-21 10:33:24 +0100$)
- NO-DMRG VERSION -
With contributions from (in alphabetic order):
[Max-Planck-Institut fuer Kohlenforschung]
Daniel Aravena : Magnetic Suceptibility
Michael Atanasov : Ab Initio Ligand Field Theory (pilot matlab implementation)
Alexander A. Auer : GIAO ZORA, VPT2 properties, NMR spectrum
Ute Becker : All parallelization in ORCA, NUMFREQ, NUMCALC
Giovanni Bistoni : ED, misc. LED, open-shell LED, HFLD
Dmytro Bykov : pre 5.0 version of the SCF Hessian
Marcos Casanova-Páez : Triplet and SCS-CIS(D). UHF-(DLPNO)-IP/EA/STEOM-CCSD. UHF-CVS-IP/STEOM-CCSD
Vijay G. Chilkuri : MRCI spin determinant printing, contributions to CSF-ICE
Pauline Colinet : FMM embedding
Dipayan Datta : RHF DLPNO-CCSD density
Achintya Kumar Dutta : EOM-CC, STEOM-CC
Nicolas Foglia : Exact transition moments, OPA infrastructure, MCD improvements
Dmitry Ganyushin : Spin-Orbit,Spin-Spin,Magnetic field MRCI
Miquel Garcia-Rates : C-PCM and meta-GGA Hessian, CCSD/C-PCM, Gaussian charge scheme
Tiago L. C. Gouveia : GS-ROHF, GS-ROCIS
Yang Guo : DLPNO-NEVPT2, F12-NEVPT2, CIM, IAO-localization
Andreas Hansen : Spin unrestricted coupled pair/coupled cluster methods
Ingolf Harden : AUTO-CI MPn and infrastructure
Benjamin Helmich-Paris : MC-RPA, TRAH-(SCF,CASSCF), AVAS, COSX integrals, SCF dyn. polar., MC-PDFT, srDFT
Lee Huntington : MR-EOM, pCC
Robert Izsak : Overlap fitted RIJCOSX, COSX-SCS-MP3, EOM
Riya Kayal : Wick's Theorem for AUTO-CI, AUTO-CI UHF-CCSDT
Emily Kempfer : AUTO-CI RHF CISDT and CCSDT, approximate NEVPT4
Christian Kollmar : KDIIS, OOCD, Brueckner-CCSD(T), CCSD density, CASPT2, CASPT2-K, improved NEVPT2
Axel Koslowski : Symmetry handling
Simone Kossmann : meta-GGA functionals, TD-DFT gradient, OOMP2, (MP2 Hessian; deprecated post 5.0)
Lucas Lang : DCDCAS, Hyperfine gauge corrections, ICE-SOC+SSC
Marvin Lechner : AUTO-CI (C++ implementation), FIC-MRCC
Spencer Leger : CASSCF response
Dagmar Lenk : GEPOL surface, SMD, ORCA-2-JSON
Dimitrios Liakos : Extrapolation schemes; Compound Job, Property file
Dimitrios Manganas : Further ROCIS development; embedding schemes. LFT, Crystal Embedding
Dimitrios Pantazis : SARC Basis sets
Anastasios Papadopoulos: AUTO-CI, single reference methods and gradients
Taras Petrenko : pre 6.0 DFT Hessian and TD-DFT gradient, ECA, NRVS
Petra Pikulova : Analytic Raman intensities
Peter Pinski : DLPNO-MP2, DLPNO-MP2 Gradient
Shashank Vittal Rao : ES-AILFT, MagRelax
Christoph Reimann : Effective Core Potentials
Marius Retegan : Local ZFS, SOC
Christoph Riplinger : Optimizer, TS searches, QM/MM, DLPNO-CCSD(T), (RO)-DLPNO pert. Triples
Michael Roemelt : Original ROCIS implementation, recursive CI coupling coefficients
Masaaki Saitow : Open-shell DLPNO-CCSD energy and density
Barbara Sandhoefer : DKH picture change effects
Yorick L. A. Schmerwitz: GMF and freeze-and-release deltaSCF, NEB S-IDPP initial path
Kantharuban Sivalingam : CASSCF convergence/infrastructure, NEVPT2, NEVPT3, NEVPT4(SD), FIC-MRCI and CEPA variants
Bernardo de Souza : ESD, SOC TD-DFT
Georgi L. Stoychev : AutoAux, RI-MP2 NMR, DLPNO-MP2 response, X2C
Van Anh Tran : RI-MP2 g-tensors
Willem Van den Heuvel : Paramagnetic NMR
Zikuan Wang : NOTCH, Electric field optimization
Frank Wennmohs : Technical directorship and infrastructure
Hang Xu : AUTO-CI-Response properties
[FACCTs GmbH]
Markus Bursch, Nicolas Foglia, Miquel Garcia-Rates, Ingolf Harden, Hagen Neugebauer, Anastasios Papadopoulos,
Christoph Riplinger, Bernardo de Souza, Georgi L. Stoychev
APM, various basis sets, CI-OPT, improved COSX, DLPNO-Multilevel,
DOCKER, DRACO, updates on ESD, Fragmentator, GOAT, IRC, LR-CPCM, L-BFGS, MBIS, meta-GGA TD-DFT gradient, ML-optimized integration grids,
MM, NACMEs, nearIR, NEB, NEB-TS, NL-DFT gradient (VV10), 2- and 3-layer-ONIOM, interface openCOSMO-RS, QMMM,
Crystal-QMMM, RESP, rigid body optimization, SF, symmetry and pop. for TD-DFT, various functionals, SOLVATOR
[Other institutions]
V. Asgeirsson : NEB
Christoph Bannwarth : sTDA-DFT, sTD-DFT, PBEh-3c, B97-3c, D3
Giovanni Bistoni : ETS/NOCV, ADLD/ADEX, COVALED
Martin Brehm : Molecular dynamics
Ronald Cardenas : ETS/NOCV
Martina Colucci : COVALED
Sebastian Ehlert : rSCAN, r2SCAN, r2SCAN-3c, D4, dhf basis sets
Marvin Friede : D4 for Fr, Ra, Ac-Lr
Lars Goerigk : TD-DFT with DH, B97 family of functionals
Stefan Grimme : VdW corrections, initial TS optimization, DFT functionals, gCP, sTDA/sTD-DF
Waldemar Hujo : DFT-NL
H. Jonsson : NEB
Holger Kruse : gCP
Marcel Mueller : wB97X-3c, vDZP basis set
Hagen Neugebauer : wr2SCAN, Native XTB
Gianluca Regni : ADLD/ADEX
Tobias Risthaus : pre 6.0 range-separated hybrid DFT and stability analysis
Lukas Wittmann : regularized MP2, r2SCAN double-hybrids, wr2SCAN
We gratefully acknowledge several colleagues who have allowed us to
interface, adapt or use parts of their codes:
Ed Valeev, F. Pavosevic, A. Kumar : LibInt (2-el integral package), F12 methods
Garnet Chan, S. Sharma, J. Yang, R. Olivares : DMRG
Ulf Ekstrom : XCFun DFT Library
Mihaly Kallay : mrcc (arbitrary order and MRCC methods)
Frank Weinhold : gennbo (NPA and NBO analysis)
Simon Mueller : openCOSMO-RS
Christopher J. Cramer and Donald G. Truhlar : smd solvation model
S Lehtola, MJT Oliveira, MAL Marques : LibXC Library
Liviu Ungur et al : ANISO software
Your calculation uses the libint2 library for the computation of 2-el integrals
For citations please refer to: http://libint.valeyev.net
Your ORCA version has been built with support for libXC version: 7.0.0
For citations please refer to: https://libxc.gitlab.io
This ORCA versions uses:
CBLAS interface : Fast vector & matrix operations
LAPACKE interface : Fast linear algebra routines
SCALAPACK package : Parallel linear algebra routines
Shared memory : Shared parallel matrices
BLAS/LAPACK : OpenBLAS 0.3.29 USE64BITINT DYNAMIC_ARCH NO_AFFINITY Cooperlake SINGLE_THREADED
Core in use : Cooperlake
Copyright (c) 2011-2014, The OpenBLAS Project
***********************************
* Starting time: Mon Jan 12 19:17:35 2026
* Host name: 98bdf875e6b8
* Process ID: 951
* Working dir.: /home/jovyan/aiida_run/8a/d8/b617-e7d1-4902-992b-8c66350477df
***********************************
***************************************
The coordinates will be read from file: aiida.coords.xyz
***************************************
Your calculation utilizes the atom-pairwise dispersion correction
based on EEQ partial charges (D4)
Warning: RI is on but no J-basis has been assigned. Assigning Def2/J (nothing to worry about!)
================================================================================
----- Orbital basis set information -----
Your calculation utilizes the basis: aug-cc-pVDZ
H, B-Ne : Obtained from the ccRepo (grant-hill.group.shef.ac.uk/ccrepo) Feb. 2017
R. A. Kendall, T. H. Dunning, Jr., R. J. Harrison, J. Chem. Phys. 96, 6796 (1992)
He : Obtained from the ccRepo (grant-hill.group.shef.ac.uk/ccrepo) Feb. 2017
D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994)
Li-Be, Na : Obtained from the ccRepo (grant-hill.group.shef.ac.uk/ccrepo) Feb. 2017
B. P. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning, Jr., A. K. Wilson, Theor. Chem. Acc. 128, 69 (2011)
Mg : Obtained from the Peterson Research Group Website (tyr0.chem.wsu.edu/~kipeters) Feb. 2017
B. P. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning, Jr., A. K. Wilson, Theor. Chem. Acc. 128, 69 (2011)
Al-Ar : Obtained from the ccRepo (grant-hill.group.shef.ac.uk/ccrepo) Feb. 2017
D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 98, 1358 (1993)
Sc-Zn : Obtained from the ccRepo (grant-hill.group.shef.ac.uk/ccrepo) Feb. 2017
N. B. Balabanov, K. A. Peterson, J. Chem. Phys. 123, 064107 (2005)
N. B. Balabanov, K. A. Peterson, J. Chem. Phys. 125, 074110 (2006)
Ga-Kr : Obtained from the ccRepo (grant-hill.group.shef.ac.uk/ccrepo) Feb. 2017
A. K. Wilson, D. E. Woon, K. A. Peterson, T. H. Dunning, Jr., J. Chem. Phys. 110, 7667 (1999)
----- AuxJ basis set information -----
Your calculation utilizes the auxiliary basis: def2/J
H-Rn: F. Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006).
Fr-Lr: K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs; Theor. Chem. Acc. 97, 119 (1997).
================================================================================
WARNINGS
Please study these warnings very carefully!
================================================================================
WARNING: Geometry Optimization
===> : Switching off AutoStart
For restart on a previous wavefunction, please use MOREAD
================================================================================
INPUT FILE
================================================================================
NAME = aiida.inp
| 1> ### Generated by AiiDA-ORCA Plugin ###
| 2> ! wB97X-D4 aug-cc-pVDZ TightOpt AnFreq
| 3> %scf
| 4> ConvForced true
| 5> convergence tight
| 6> end
| 7>
| 8> * xyzfile 0 1 aiida.coords.xyz
| 9>
| 10> ****END OF INPUT****
================================================================================
*****************************
* Geometry Optimization Run *
*****************************
Geometry optimization settings:
Update method Update .... BFGS
Choice of coordinates CoordSys .... (2022) Redundant Internals
Initial Hessian InHess .... Almloef's Model
Max. no of cycles MaxIter .... 50
Convergence Tolerances:
Energy Change TolE .... 1.0000e-06 Eh
Max. Gradient TolMAXG .... 1.0000e-04 Eh/bohr
RMS Gradient TolRMSG .... 3.0000e-05 Eh/bohr
Max. Displacement TolMAXD .... 1.0000e-03 bohr
RMS Displacement TolRMSD .... 6.0000e-04 bohr
Strict Convergence .... False
------------------------------------------------------------------------------
ORCA OPTIMIZATION COORDINATE SETUP
------------------------------------------------------------------------------
The optimization will be done in redundant internal coordinates (2022)
Making redundant internal coordinates ... (2022 redundants) done
Evaluating the initial hessian ... (Almloef) done
Evaluating the coordinates ... done
Calculating the B-matrix .... done
Calculating the G-matrix .... done
The number of degrees of freedom .... 72
-----------------------------------------------------------------
Redundant Internal Coordinates
-----------------------------------------------------------------
Definition Initial Value Approx d2E/dq
-----------------------------------------------------------------
1. B(C 1,C 0) 1.3397 0.751526
2. B(C 2,C 1) 1.4739 0.459028
3. B(C 3,C 2) 1.4037 0.594086
4. B(C 4,C 3) 1.3981 0.606545
5. B(C 5,C 4) 1.3916 0.621045
6. B(C 6,C 5) 1.3922 0.619829
7. B(C 7,C 2) 1.4015 0.598948
8. B(C 7,C 6) 1.3990 0.604416
9. B(H 8,C 0) 1.0861 0.365282
10. B(H 9,C 0) 1.0832 0.369223
11. B(H 10,C 1) 1.0887 0.361803
12. B(H 11,C 3) 1.0878 0.362983
13. B(H 12,C 4) 1.0868 0.364379
14. B(H 13,C 5) 1.0866 0.364576
15. B(H 14,C 6) 1.0869 0.364180
16. B(H 15,C 7) 1.0857 0.365797
17. A(H 8,C 0,H 9) 116.5445 0.292643
18. A(C 1,C 0,H 8) 119.9861 0.365547
19. A(C 1,C 0,H 9) 123.4694 0.366220
20. A(C 0,C 1,C 2) 126.7192 0.425716
21. A(C 0,C 1,H 10) 117.6244 0.364949
22. A(C 2,C 1,H 10) 115.6563 0.335814
23. A(C 1,C 2,C 7) 123.5744 0.408858
24. A(C 3,C 2,C 7) 118.1218 0.428086
25. A(C 1,C 2,C 3) 118.3038 0.408269
26. A(C 2,C 3,H 11) 120.4880 0.350843
27. A(C 2,C 3,C 4) 121.0554 0.429055
28. A(C 4,C 3,H 11) 118.4566 0.352076
29. A(C 3,C 4,C 5) 120.0272 0.432488
30. A(C 5,C 4,H 12) 120.0526 0.353716
31. A(C 3,C 4,H 12) 119.9201 0.352305
32. A(C 4,C 5,C 6) 119.7170 0.434176
33. A(C 6,C 5,H 13) 120.1303 0.353631
34. A(C 4,C 5,H 13) 120.1527 0.353749
35. A(C 7,C 6,H 14) 119.8155 0.352063
36. A(C 5,C 6,H 14) 119.9833 0.353566
37. A(C 5,C 6,C 7) 120.2012 0.432062
38. A(C 6,C 7,H 15) 118.0114 0.352327
39. A(C 2,C 7,H 15) 121.1113 0.351786
40. A(C 2,C 7,C 6) 120.8774 0.429412
41. D(C 2,C 1,C 0,H 8) -179.9999 0.040294
42. D(H 10,C 1,C 0,H 8) -0.0005 0.040294
43. D(C 2,C 1,C 0,H 9) 0.0011 0.040294
44. D(H 10,C 1,C 0,H 9) -179.9995 0.040294
45. D(C 7,C 2,C 1,C 0) -0.0032 0.014354
46. D(C 7,C 2,C 1,H 10) 179.9973 0.014354
47. D(C 3,C 2,C 1,C 0) 179.9970 0.014354
48. D(C 3,C 2,C 1,H 10) -0.0024 0.014354
49. D(H 11,C 3,C 2,C 7) 179.9993 0.024305
50. D(H 11,C 3,C 2,C 1) -0.0009 0.024305
51. D(C 4,C 3,C 2,C 7) -0.0005 0.024305
52. D(C 4,C 3,C 2,C 1) 179.9993 0.024305
53. D(C 5,C 4,C 3,H 11) -179.9992 0.025392
54. D(C 5,C 4,C 3,C 2) 0.0006 0.025392
55. D(H 12,C 4,C 3,C 2) -180.0000 0.025392
56. D(H 12,C 4,C 3,H 11) 0.0002 0.025392
57. D(H 13,C 5,C 4,H 12) -0.0000 0.026695
58. D(H 13,C 5,C 4,C 3) 179.9994 0.026695
59. D(C 6,C 5,C 4,H 12) -179.9997 0.026695
60. D(C 6,C 5,C 4,C 3) -0.0003 0.026695
61. D(H 14,C 6,C 5,H 13) 0.0012 0.026584
62. D(H 14,C 6,C 5,C 4) -179.9990 0.026584
63. D(C 7,C 6,C 5,H 13) -179.9998 0.026584
64. D(C 7,C 6,C 5,C 4) -0.0000 0.026584
65. D(C 2,C 7,C 6,H 14) 179.9991 0.025204
66. D(C 2,C 7,C 6,C 5) 0.0001 0.025204
67. D(H 15,C 7,C 2,C 3) 179.9987 0.024726
68. D(H 15,C 7,C 2,C 1) -0.0011 0.024726
69. D(C 6,C 7,C 2,C 3) 0.0001 0.024726
70. D(H 15,C 7,C 6,C 5) -179.9985 0.025204
71. D(C 6,C 7,C 2,C 1) -179.9997 0.024726
72. D(H 15,C 7,C 6,H 14) 0.0005 0.025204
-----------------------------------------------------------------
Number of atoms .... 16
Number of degrees of freedom .... 72
*************************************************************
* GEOMETRY OPTIMIZATION CYCLE 1 *
*************************************************************
---------------------------------
CARTESIAN COORDINATES (ANGSTROEM)
---------------------------------
C 6.041528 5.200559 6.504493
C 6.888082 5.647157 7.441919
C 8.322206 5.939078 7.267190
C 9.047088 6.402351 8.376402
C 10.410036 6.696915 8.275381
C 11.069952 6.532345 7.061261
C 10.367170 6.073851 5.950394
C 9.003312 5.779422 6.052773
H 5.000000 5.021077 6.754779
H 6.334997 5.000000 5.481287
H 6.490809 5.816949 8.441242
H 8.556832 6.540252 9.337654
H 10.953335 7.054502 9.146046
H 12.129249 6.760686 6.980443
H 10.878288 5.943726 5.000000
H 8.490238 5.424238 5.164290
----------------------------
CARTESIAN COORDINATES (A.U.)
----------------------------
NO LB ZA FRAG MASS X Y Z
0 C 6.0000 0 12.011 11.416833 9.827633 12.291710
1 C 6.0000 0 12.011 13.016588 10.671580 14.063189
2 C 6.0000 0 12.011 15.726690 11.223232 13.732998
3 C 6.0000 0 12.011 17.096520 12.098690 15.829106
4 C 6.0000 0 12.011 19.672118 12.655336 15.638204
5 C 6.0000 0 12.011 20.919178 12.344343 13.343849
6 C 6.0000 0 12.011 19.591112 11.477915 11.244615
7 C 6.0000 0 12.011 17.013794 10.921525 11.438083
8 H 1.0000 0 1.008 9.448631 9.488461 12.764682
9 H 1.0000 0 1.008 11.971409 9.448631 10.358131
10 H 1.0000 0 1.008 12.265851 10.992441 15.951636
11 H 1.0000 0 1.008 16.170069 12.359284 17.645609
12 H 1.0000 0 1.008 20.698804 13.331077 17.283522
13 H 1.0000 0 1.008 22.920958 12.775846 13.191125
14 H 1.0000 0 1.008 20.556986 11.232015 9.448631
15 H 1.0000 0 1.008 16.044224 10.250325 9.759093
--------------------------------
INTERNAL COORDINATES (ANGSTROEM)
--------------------------------
C 0 0 0 0.000000000000 0.00000000 0.00000000
C 1 0 0 1.339728133314 0.00000000 0.00000000
C 2 1 0 1.473926563879 126.71924485 0.00000000
C 3 2 1 1.403719821287 118.30375959 179.99700583
C 4 3 2 1.398070168178 121.05538183 179.99931109
C 5 4 3 1.391639562166 120.02724753 0.00000000
C 6 5 4 1.392172663447 119.71704741 0.00000000
C 7 6 5 1.399027322583 120.20115577 0.00000000
H 1 2 3 1.086110866400 119.98613008 180.00007403
H 1 2 3 1.083189398262 123.46936538 0.00000000
H 2 1 3 1.088715404683 117.62443968 179.99943949
H 4 3 2 1.087829393377 120.48801093 0.00000000
H 5 4 3 1.086784108459 119.92012893 180.00000409
H 6 5 4 1.086637186722 120.15269507 179.99940867
H 7 6 5 1.086932984287 119.98331564 180.00096180
H 8 7 6 1.085727103846 118.01137010 180.00154206
---------------------------
INTERNAL COORDINATES (A.U.)
---------------------------
C 0 0 0 0.000000000000 0.00000000 0.00000000
C 1 0 0 2.531719265872 0.00000000 0.00000000
C 2 1 0 2.785317547242 126.71924485 0.00000000
C 3 2 1 2.652646030989 118.30375959 179.99700583
C 4 3 2 2.641969733862 121.05538183 179.99931109
C 5 4 3 2.629817649624 120.02724753 0.00000000
C 6 5 4 2.630825065047 119.71704741 0.00000000
C 7 6 5 2.643778493554 120.20115577 0.00000000
H 1 2 3 2.052452088572 119.98613008 180.00007403
H 1 2 3 2.046931313882 123.46936538 0.00000000
H 2 1 3 2.057373952631 117.62443968 179.99943949
H 4 3 2 2.055699633913 120.48801093 0.00000000
H 5 4 3 2.053724331685 119.92012893 180.00000409
H 6 5 4 2.053446689839 120.15269507 179.99940867
H 7 6 5 2.054005666228 119.98331564 180.00096180
H 8 7 6 2.051726882444 118.01137010 180.00154206
---------------------
BASIS SET INFORMATION
---------------------
There are 2 groups of distinct atoms
Group 1 Type C : 18s5p2d contracted to 4s3p2d pattern {8811/311/11}
Group 2 Type H : 5s2p contracted to 3s2p pattern {311/11}
Atom 0C basis set group => 1
Atom 1C basis set group => 1
Atom 2C basis set group => 1
Atom 3C basis set group => 1
Atom 4C basis set group => 1
Atom 5C basis set group => 1
Atom 6C basis set group => 1
Atom 7C basis set group => 1
Atom 8H basis set group => 2
Atom 9H basis set group => 2
Atom 10H basis set group => 2
Atom 11H basis set group => 2
Atom 12H basis set group => 2
Atom 13H basis set group => 2
Atom 14H basis set group => 2
Atom 15H basis set group => 2
---------------------------------
AUXILIARY/J BASIS SET INFORMATION
---------------------------------
There are 2 groups of distinct atoms
Group 1 Type C : 12s5p4d2f1g contracted to 6s4p3d1f1g pattern {711111/2111/211/2/1}
Group 2 Type H : 5s2p1d contracted to 3s1p1d pattern {311/2/1}
Atom 0C basis set group => 1
Atom 1C basis set group => 1
Atom 2C basis set group => 1
Atom 3C basis set group => 1
Atom 4C basis set group => 1
Atom 5C basis set group => 1
Atom 6C basis set group => 1
Atom 7C basis set group => 1
Atom 8H basis set group => 2
Atom 9H basis set group => 2
Atom 10H basis set group => 2
Atom 11H basis set group => 2
Atom 12H basis set group => 2
Atom 13H basis set group => 2
Atom 14H basis set group => 2
Atom 15H basis set group => 2
sh: 1: /opt/orca/orca_startup: not found
ORCA finished by error termination in Startup
Calling Command: /opt/orca/orca_startup aiida.int.tmp
[file orca_tools/qcmsg.cpp, line 394]:
.... aborting the run
[file orca_tools/qcmsg.cpp, line 394]:
.... aborting the run
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment