Created
November 10, 2025 21:28
-
-
Save stephenlb/2397423112d5f9c286984512a1775c87 to your computer and use it in GitHub Desktop.
mnist tensorflow keras tutorial!
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import tensorflow as tf | |
| import tensorflow_datasets as tfds | |
| (ds_train, ds_test), ds_info = tfds.load( | |
| 'mnist', | |
| split=['train', 'test'], | |
| shuffle_files=True, | |
| as_supervised=True, | |
| with_info=True, | |
| ) | |
| def normalize_img(image, label): | |
| """Normalizes images: `uint8` -> `float32`.""" | |
| return tf.cast(image, tf.float32) / 255., label | |
| ### TRAIN | |
| ds_train = ds_train.map( | |
| normalize_img, num_parallel_calls=tf.data.AUTOTUNE) | |
| ds_train = ds_train.cache() | |
| ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples) | |
| ds_train = ds_train.batch(128) | |
| ds_train = ds_train.prefetch(tf.data.AUTOTUNE) | |
| ### TEST | |
| ds_test = ds_test.map( | |
| normalize_img, num_parallel_calls=tf.data.AUTOTUNE) | |
| ds_test = ds_test.batch(128) | |
| ds_test = ds_test.cache() | |
| ds_test = ds_test.prefetch(tf.data.AUTOTUNE) | |
| ## The model | |
| model = tf.keras.models.Sequential([ | |
| tf.keras.layers.Flatten(input_shape=(28, 28)), | |
| tf.keras.layers.Dense(128, activation='relu'), | |
| tf.keras.layers.Dense(10) | |
| ]) | |
| model.compile( | |
| optimizer=tf.keras.optimizers.Adam(0.001), | |
| loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), | |
| metrics=[tf.keras.metrics.SparseCategoricalAccuracy()], | |
| ) | |
| model.fit( | |
| ds_train, | |
| epochs=60, | |
| validation_data=ds_test, | |
| ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment