Created
August 25, 2019 15:23
-
-
Save sslotin/3a431c367726e1f1c022fbee9eb6c212 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from argparse import ArgumentParser | |
| from flask import Flask, jsonify, request | |
| import numpy as np | |
| import embedlib | |
| app = Flask(__name__) | |
| # I don't know exactly what it does | |
| from flask_cors import CORS | |
| CORS(app) | |
| @app.route("/classify", methods=["GET"]) | |
| def classify(): | |
| text = request.args.get("text", type=str, default="") | |
| vec = embed(text) | |
| k = np.dot(embeddings, vec).argmax() | |
| label = labels[k] | |
| confidence = np.dot(vec, embeddings[k]) | |
| return jsonify({ | |
| 'label' : label, | |
| 'confidence' : str(confidence) | |
| }) | |
| @app.route("/rank", methods=["GET"]) | |
| def rank(): | |
| text = request.args.get("text", type=str, default="") | |
| vec = embed(text) | |
| response = [] | |
| used_labels = [] | |
| for k in reversed(np.dot(embeddings, vec).argsort()): | |
| label = labels[k] | |
| if label not in used_labels: | |
| used_labels.append(label) | |
| confidence = np.dot(vec, embeddings[k]) | |
| question = questions[k].capitalize() | |
| answer = answers[label] | |
| response.append({ | |
| 'question' : question, | |
| 'answer' : answer, | |
| 'confidence' : str(confidence) | |
| }) | |
| return jsonify(response) | |
| if __name__ == "__main__": | |
| parser = ArgumentParser() | |
| parser.add_argument('--port', default=2000) | |
| parser.add_argument('--checkpoint', default='checkpoint') | |
| parser.add_argument('--questions', default='data/cerebra.questions') | |
| parser.add_argument('--answers', default='data/cerebra.answers') | |
| args = parser.parse_args() | |
| embed = embedlib.Embedder('bert-base-en', args.checkpoint) | |
| with open(args.answers, 'r') as file: | |
| answers = yaml.safe_load(file) | |
| with open(args.questions, 'r') as file: | |
| questions_dict = yaml.safe_load(file) | |
| labels = [] | |
| embeddings = [] | |
| questions = [] | |
| for key, l in questions_dict.items(): | |
| for s in l: | |
| labels.append(key) | |
| questions.append(s) | |
| embeddings.append(embed(s)) | |
| embeddings = np.vstack(embeddings) | |
| app.run(host='0.0.0.0', port=args.port) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment