-
-
Save sritee/c998d6ea3c4b4e94e194c8e8188600ee to your computer and use it in GitHub Desktop.
Vanilla policy gradient with tensorflow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #improved GIST of https://gist.github.com/MikeOuimet/f50904374651c9c15f236aef3109d57 | |
| #allowed backwards compatability by refactoring code involving tf.diag gradients | |
| import numpy as np | |
| import gym | |
| import tensorflow as tf | |
| import matplotlib.pyplot as plt | |
| def weight_variable(shape): | |
| initial = tf.truncated_normal(shape, stddev=0.1) | |
| return tf.Variable(initial) | |
| def bias_variable(shape): | |
| initial = tf.constant(0.2, shape=shape) | |
| return tf.Variable(initial) | |
| #Initial state and NN | |
| env = gym.make('CartPole-v0') | |
| env._max_episode_steps = 200 | |
| #env.monitor.start('/tmp/cartpole-experiment-1', force=True) | |
| dim = max(np.shape(env.observation_space)) | |
| dim_actions = env.action_space.n | |
| num_nodes = 100 | |
| num_gradients = 1 | |
| maxsteps = 500 | |
| num_runs = 1000 | |
| sess = tf.InteractiveSession() | |
| state = tf.placeholder(tf.float32, shape=[None, dim]) | |
| action_choice = tf.placeholder(tf.int32, shape=[None]) | |
| reward_signal = tf.placeholder(tf.float32, shape=(None,1) ) | |
| n_timesteps = tf.placeholder(tf.float32, shape=()) | |
| W1 = weight_variable([dim, num_nodes]) | |
| b1 = bias_variable([num_nodes]) | |
| a1 = tf.nn.relu(tf.matmul(state, W1) + b1) | |
| Wo = weight_variable([num_nodes, dim_actions]) | |
| bo = bias_variable([dim_actions]) | |
| ao = tf.nn.softmax(tf.matmul(a1, Wo) + bo) | |
| ao_flat=tf.reshape(ao,(-1,1)) | |
| chosen_actions=tf.range(0,tf.shape(ao)[0])*tf.shape(ao)[1]+action_choice | |
| log_prob=tf.log(tf.gather(ao_flat,chosen_actions)) | |
| loss = tf.multiply(log_prob, reward_signal) | |
| loss = -tf.reshape(loss, [-1]) | |
| train_step = tf.train.AdamOptimizer().minimize(loss) | |
| init = tf.initialize_all_variables() | |
| sess = tf.Session() | |
| sess.run(init) | |
| timestep_learning = np.zeros((num_runs,1)) | |
| for run in range(num_runs): | |
| states = np.zeros((maxsteps,dim), dtype='float32') | |
| actions = np.zeros((maxsteps,1), dtype='float32') | |
| rewards = np.zeros((maxsteps,1), dtype='float32') | |
| timestep =0 | |
| observation = env.reset() | |
| observation = np.reshape(observation,(1,dim)) | |
| done = False | |
| while not done and timestep < maxsteps: | |
| if run % 50 == 0: | |
| env.render() | |
| action_prob = sess.run(ao, feed_dict={state: observation}) | |
| action = np.argmax(np.random.multinomial(1, action_prob[0])) | |
| new_observation, reward, done, info = env.step(action) | |
| states[timestep, :] = observation | |
| actions[timestep] = action | |
| rewards[timestep, :] = reward | |
| timestep += 1 | |
| observation[:] = new_observation | |
| states = states[:timestep, :] | |
| actions = actions[:timestep, :] | |
| rewards = rewards[:timestep,:] | |
| rewards[:, 0] = np.cumsum(rewards[::-1])[::-1] | |
| #break | |
| if run % 50 == 0: | |
| print ('run #: ', run) | |
| print ('Time lasted: ', timestep) | |
| #print(rewards) | |
| for i in range(num_gradients): | |
| sess.run(train_step, feed_dict={state: states, action_choice: actions.flatten(), reward_signal: rewards, n_timesteps: timestep}) | |
| timestep_learning[run] = timestep | |
| env.monitor.close() | |
| env.render(close=True) | |
| plt.plot(timestep_learning) | |
| plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment