Last active
September 11, 2023 20:21
-
-
Save sergioloppe/d1fa6c987b0123ca1edabdc67d5049e4 to your computer and use it in GitHub Desktop.
Pairwise comparison for personal data
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Dependencies | |
| # pip install mmh3 textdistance | |
| import random | |
| import mmh3 | |
| import textdistance | |
| #### | |
| # Define the main algorithm | |
| #### | |
| def jaro_winkler_distance(R1, R2): | |
| return textdistance.jaro_winkler(R1, R2) | |
| def levenshtein_distance(R1, R2): | |
| return textdistance.levenshtein(R1, R2) | |
| def levenshtein_probability(R1,R2): | |
| D = levenshtein_distance(R1, R2) | |
| max_len = max(len(R1), len(R2)) | |
| P = 1 - D / max_len | |
| return P | |
| def normalized_weighted_average(values, weights): | |
| return sum(weights[i] * values[i] for i in range(len(values))) / sum(weights) | |
| def compute_normalized_weighted_average(x, y, distance_function, weights): | |
| distances = [distance_function(x[i], y[i]) for i in range(len(x))] | |
| return normalized_weighted_average(distances, weights) | |
| def compare(x, y, w): | |
| jw_s1 = compute_normalized_weighted_average(x, y, jaro_winkler_distance, w) | |
| lv_s2 = compute_normalized_weighted_average(x, y, levenshtein_probability, w) | |
| s = normalized_weighted_average([jw_s1, lv_s2], [0.6, 0.4]) | |
| # print(f'{s} <- {jw_s1} {lv_s2}') | |
| return s | |
| def identify_duplicates(x, Y, w, threshold): | |
| duplicates = [y for y in Y if compare(x, y, w) >= threshold] | |
| return duplicates | |
| #### | |
| # Create a Random Dataset | |
| #### | |
| def generate_dataset(n, x): | |
| """ | |
| x = ["Johannes", "Dough", "uk", "1990-01-01"] | |
| """ | |
| first_names = ["John", "Jon", "Jonathan", "Johnny", "Jonny", "Johannes", "Juan", "Joan", "Jean", "Giovanni"] | |
| last_names = ["Doe", "Dow", "Dough", "Doh", "Do", "Dou", "Doww", "Dowe", "Dohh", "Doughh"] | |
| nationalities = ["us", "ca", "uk", "au", "de", "fr", "es", "it", "du", "pt"] | |
| years = [str(year) for year in range(1980, 2000)] | |
| Y = [x] | |
| for _ in range(n): | |
| first_name = random.choice(first_names) | |
| last_name = random.choice(last_names) | |
| nationality = random.choice(nationalities) | |
| year = random.choice(years) | |
| date_of_birth = f"{year}-01-01" | |
| Y.append([first_name, last_name, nationality, date_of_birth]) | |
| return x, Y | |
| #### | |
| # Testing the thing | |
| #### | |
| # Weights and threshold | |
| w = [0.25, 0.25, 0.1, 0.4] | |
| th = 0.97 | |
| # Generate 10000 records | |
| x = ["Johannes", "Dough", "uk", "1990-01-01"] | |
| x, Y = generate_dataset(10000, x) | |
| print(x) | |
| print(Y[:5]) # Print the first 5 records | |
| print("-----") | |
| identify_duplicates(x, Y, w, th) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment