Every time you choose to apply a rule(s), explicitly state the rule(s) in the output. You can abbreviate the rule description to a single word or phrase.
[Brief description ]
- [more description]
- [more description]
- [more description]
| def dot_product(x, kernel): | |
| """ | |
| Wrapper for dot product operation, in order to be compatible with both | |
| Theano and Tensorflow | |
| Args: | |
| x (): input | |
| kernel (): weights | |
| Returns: | |
| """ | |
| if K.backend() == 'tensorflow': |
| from keras import backend as K, initializers, regularizers, constraints | |
| from keras.engine.topology import Layer | |
| def dot_product(x, kernel): | |
| """ | |
| Wrapper for dot product operation, in order to be compatible with both | |
| Theano and Tensorflow | |
| Args: |
##VGG16 model for Keras
This is the Keras model of the 16-layer network used by the VGG team in the ILSVRC-2014 competition.
It has been obtained by directly converting the Caffe model provived by the authors.
Details about the network architecture can be found in the following arXiv paper:
Very Deep Convolutional Networks for Large-Scale Image Recognition
K. Simonyan, A. Zisserman