Created
September 28, 2023 05:13
-
-
Save r41k0u/5b2f4afedb6d4708e113b20b562f00ba to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from matplotlib.animation import FuncAnimation | |
| #////////////////////////// | |
| #-------------------------- | |
| # (0,0) \ ////// | |
| # \ ------ | |
| # l1,k1 \ / (1,0.5) | |
| # \ / l2,k2 | |
| # O m | |
| # (0.5, 1) | |
| l1 = 1 | |
| l2 = 1 | |
| k1 = 2 | |
| k2 = 2 | |
| g = 9.81 | |
| spring1_end = np.array([0, 0]) | |
| spring2_end = np.array([1, 0.5]) | |
| particle_mass = 1 | |
| particle_position = np.array([0.5, 1]) | |
| target_position = np.array([0.5, 2]) | |
| def spring_force(position, l, k, end): | |
| stretch = np.linalg.norm(position - end) - l | |
| unit = (position - end) / np.linalg.norm(position - end) | |
| force = -k * stretch * unit | |
| return force | |
| def spring_force_jacobian(position, l, k, end): | |
| curr_length = np.linalg.norm(position - end) | |
| unit = (position - end) / curr_length | |
| J = -k * ( (1 - l / curr_length) * (np.eye(2) - np.outer(unit, unit)) + np.outer(unit, unit) ) | |
| return J | |
| # solve for equilibrium using newton's method | |
| F = lambda x: spring_force(x, l1, k1, spring1_end) + spring_force(x, l2, k2, spring2_end) + np.array([0, particle_mass * g]) | |
| J = lambda x: spring_force_jacobian(x, l1, k1, spring1_end) + spring_force_jacobian(x, l2, k2, spring2_end) | |
| # verify jacobians | |
| # for i in range(10): | |
| # x = np.random.rand(2) * 10 | |
| # deltaX = np.random.rand(2) | |
| # dx = deltaX * (10**-i) | |
| # f = F(x) | |
| # f2 = F(x + dx) | |
| # print(np.linalg.norm(((f2 - f) / (10**-i)) - J(x) @ deltaX)) | |
| def equilibrium(particle_position, F, J): | |
| while np.linalg.norm(F(particle_position)) > 1e-6: | |
| particle_position = particle_position + -np.linalg.solve(J(particle_position), F(particle_position)) | |
| return particle_position | |
| particle_position = equilibrium(particle_position, F, J) | |
| print("Initial equilibrium:") | |
| print("Positions: ", particle_position) | |
| def delf_delk(position, l, end): | |
| curr_length = np.linalg.norm(position - end) | |
| unit = (position - end) / curr_length | |
| return -(curr_length - l) * unit | |
| T = lambda x: np.linalg.norm(x - target_position)**2 | |
| # gradient descent | |
| alpha = 0.1 | |
| while np.linalg.norm(T(particle_position)) > 1e-3: | |
| # delf_delx * delx_delp = - delf_delp | |
| # p are our control parameters: k1, k2 in this case | |
| delf_delp = np.column_stack((delf_delk(particle_position, l1, spring1_end), delf_delk(particle_position, l2, spring2_end))) | |
| delx_delp = -np.linalg.inv(J(particle_position)) @ delf_delp | |
| grad_T = (particle_position - target_position) @ delx_delp | |
| delta_p = - alpha * grad_T | |
| k1 += delta_p[0] | |
| k2 += delta_p[1] | |
| # recalculate equilibrium | |
| particle_position = equilibrium(particle_position, F, J) | |
| print("Final equilibrium:") | |
| print("Spring constants: ", k1, k2) | |
| print("Positions: ", particle_position) | |
| # Animate using these spring constants | |
| g = -g | |
| b1 = b2 = 0.5 # damping - doesn't affect final state | |
| dt = 0.1 | |
| N = 1000 | |
| x = np.zeros(N) | |
| y = np.zeros(N) | |
| def acceleration(x, y, vx, vy): | |
| r1 = np.sqrt(x**2 + y**2) | |
| r2 = np.sqrt((x-1)**2 + (y-0.5)**2) | |
| ax = -k1 * (r1 - l1) * x/r1 - k2 * (r2 - l2) * (x-1)/r2 - b1 * vx - b2 * vx | |
| ay = -k1 * (r1 - l1) * y/r1 - k2 * (r2 - l2) * (y-0.5)/r2 - g - b1 * vy - b2 * vy | |
| return ax, ay | |
| x[0], y[0] = np.array([0.5, 1]) | |
| vx, vy = 0, 0 | |
| for i in range(1, N): | |
| ax, ay = acceleration(x[i-1], y[i-1], vx, vy) | |
| vx += ax * dt | |
| vy += ay * dt | |
| x[i] = x[i-1] + vx * dt | |
| y[i] = y[i-1] + vy * dt | |
| fig, ax = plt.subplots() | |
| ax.set_xlim(0, 1) | |
| ax.set_ylim(3, 0) # invert the y-axis | |
| spring1, = ax.plot([], [], 'b-') | |
| spring2, = ax.plot([], [], 'r-') | |
| mass, = ax.plot([], [], 'go') | |
| def init(): | |
| spring1.set_data([], []) | |
| spring2.set_data([], []) | |
| mass.set_data([], []) | |
| return spring1, spring2, mass | |
| def animate(i): | |
| spring1.set_data([0, x[i]], [0, y[i]]) | |
| spring2.set_data([1, x[i]], [0.5, y[i]]) | |
| mass.set_data([x[i]], [y[i]]) | |
| return spring1, spring2, mass | |
| ani = FuncAnimation(fig, animate, frames=N, init_func=init, blit=True) | |
| # uncomment the following line to enable matplotlib window for zooming | |
| # plt.show() | |
| ani.save('anim.gif', fps=60) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment