Created
February 7, 2019 15:48
-
-
Save qzhong0605/159d58fa74b61cddacc5f1c4f5032a89 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| name: "mobilenetv2" | |
| layer { | |
| name: "data" | |
| type: "Data" | |
| top: "data" | |
| top: "label" | |
| include { | |
| phase: TRAIN | |
| } | |
| transform_param { | |
| scale: 0.0170000009239 | |
| mirror: true | |
| crop_size: 224 | |
| mean_value: 104.0 | |
| mean_value: 117.0 | |
| mean_value: 123.0 | |
| } | |
| data_param { | |
| source: "/mnt/disk1/zhibin/experiment_data/imagenet/caffe_lmdb/ilsvrc12_encoded_train_lmdb" | |
| batch_size: 32 | |
| backend: LMDB | |
| } | |
| } | |
| layer { | |
| name: "data" | |
| type: "Data" | |
| top: "data" | |
| top: "label" | |
| include { | |
| phase: TEST | |
| } | |
| transform_param { | |
| scale: 0.0170000009239 | |
| mirror: false | |
| crop_size: 224 | |
| mean_value: 104.0 | |
| mean_value: 117.0 | |
| mean_value: 123.0 | |
| } | |
| data_param { | |
| source: "/mnt/disk1/zhibin/experiment_data/imagenet/caffe_lmdb/ilsvrc12_encoded_val_lmdb" | |
| batch_size: 32 | |
| backend: LMDB | |
| } | |
| } | |
| layer { | |
| name: "conv1" | |
| type: "Convolution" | |
| bottom: "data" | |
| top: "conv1" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 1 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "conv1" | |
| top: "conv1/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "conv1/scale" | |
| type: "Scale" | |
| bottom: "conv1/bn" | |
| top: "conv1/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "conv1/relu" | |
| type: "ReLU" | |
| bottom: "conv1/bn" | |
| top: "conv1/bn" | |
| } | |
| layer { | |
| name: "bottleneck1/expand" | |
| type: "Convolution" | |
| bottom: "conv1/bn" | |
| top: "bottleneck1/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck1/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck1/expand" | |
| top: "bottleneck1/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck1/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck1/expand/bn" | |
| top: "bottleneck1/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck1/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck1/expand/bn" | |
| top: "bottleneck1/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck1/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck1/expand/bn" | |
| top: "bottleneck1/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 32 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck1/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck1/dw" | |
| top: "bottleneck1/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck1/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck1/dw/bn" | |
| top: "bottleneck1/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck1/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck1/dw/bn" | |
| top: "bottleneck1/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck1/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck1/dw/bn" | |
| top: "bottleneck1/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 16 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck1/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck1/linear" | |
| top: "bottleneck1/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck1/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck1/linear/bn" | |
| top: "bottleneck1/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/1/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck1/linear/bn" | |
| top: "bottleneck2/1/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 96 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/1/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck2/1/expand" | |
| top: "bottleneck2/1/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/1/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck2/1/expand/bn" | |
| top: "bottleneck2/1/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/1/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck2/1/expand/bn" | |
| top: "bottleneck2/1/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck2/1/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck2/1/expand/bn" | |
| top: "bottleneck2/1/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 96 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 96 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/1/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck2/1/dw" | |
| top: "bottleneck2/1/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/1/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck2/1/dw/bn" | |
| top: "bottleneck2/1/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/1/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck2/1/dw/bn" | |
| top: "bottleneck2/1/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck2/1/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck2/1/dw/bn" | |
| top: "bottleneck2/1/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 24 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/1/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck2/1/linear" | |
| top: "bottleneck2/1/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/1/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck2/1/linear/bn" | |
| top: "bottleneck2/1/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/2/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck2/1/linear/bn" | |
| top: "bottleneck2/2/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 144 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/2/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck2/2/expand" | |
| top: "bottleneck2/2/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/2/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck2/2/expand/bn" | |
| top: "bottleneck2/2/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/2/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck2/2/expand/bn" | |
| top: "bottleneck2/2/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck2/2/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck2/2/expand/bn" | |
| top: "bottleneck2/2/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 144 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 144 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/2/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck2/2/dw" | |
| top: "bottleneck2/2/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/2/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck2/2/dw/bn" | |
| top: "bottleneck2/2/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/2/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck2/2/dw/bn" | |
| top: "bottleneck2/2/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck2/2/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck2/2/dw/bn" | |
| top: "bottleneck2/2/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 24 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/2/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck2/2/linear" | |
| top: "bottleneck2/2/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/2/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck2/2/linear/bn" | |
| top: "bottleneck2/2/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck2/2/sum" | |
| type: "Eltwise" | |
| bottom: "bottleneck2/1/linear/bn" | |
| bottom: "bottleneck2/2/linear/bn" | |
| top: "bottleneck2/2/sum" | |
| eltwise_param { | |
| operation: SUM | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/1/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck2/2/sum" | |
| top: "bottleneck3/1/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 144 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/1/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck3/1/expand" | |
| top: "bottleneck3/1/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/1/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck3/1/expand/bn" | |
| top: "bottleneck3/1/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/1/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck3/1/expand/bn" | |
| top: "bottleneck3/1/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck3/1/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck3/1/expand/bn" | |
| top: "bottleneck3/1/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 144 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 144 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/1/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck3/1/dw" | |
| top: "bottleneck3/1/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/1/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck3/1/dw/bn" | |
| top: "bottleneck3/1/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/1/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck3/1/dw/bn" | |
| top: "bottleneck3/1/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck3/1/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck3/1/dw/bn" | |
| top: "bottleneck3/1/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/1/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck3/1/linear" | |
| top: "bottleneck3/1/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/1/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck3/1/linear/bn" | |
| top: "bottleneck3/1/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/2/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck3/1/linear/bn" | |
| top: "bottleneck3/2/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 192 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/2/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck3/2/expand" | |
| top: "bottleneck3/2/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/2/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck3/2/expand/bn" | |
| top: "bottleneck3/2/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/2/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck3/2/expand/bn" | |
| top: "bottleneck3/2/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck3/2/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck3/2/expand/bn" | |
| top: "bottleneck3/2/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 192 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 192 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/2/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck3/2/dw" | |
| top: "bottleneck3/2/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/2/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck3/2/dw/bn" | |
| top: "bottleneck3/2/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/2/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck3/2/dw/bn" | |
| top: "bottleneck3/2/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck3/2/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck3/2/dw/bn" | |
| top: "bottleneck3/2/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/2/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck3/2/linear" | |
| top: "bottleneck3/2/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/2/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck3/2/linear/bn" | |
| top: "bottleneck3/2/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/2/sum" | |
| type: "Eltwise" | |
| bottom: "bottleneck3/1/linear/bn" | |
| bottom: "bottleneck3/2/linear/bn" | |
| top: "bottleneck3/2/sum" | |
| eltwise_param { | |
| operation: SUM | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/3/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck3/2/sum" | |
| top: "bottleneck3/3/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 192 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/3/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck3/3/expand" | |
| top: "bottleneck3/3/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/3/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck3/3/expand/bn" | |
| top: "bottleneck3/3/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/3/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck3/3/expand/bn" | |
| top: "bottleneck3/3/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck3/3/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck3/3/expand/bn" | |
| top: "bottleneck3/3/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 192 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 192 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/3/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck3/3/dw" | |
| top: "bottleneck3/3/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/3/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck3/3/dw/bn" | |
| top: "bottleneck3/3/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/3/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck3/3/dw/bn" | |
| top: "bottleneck3/3/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck3/3/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck3/3/dw/bn" | |
| top: "bottleneck3/3/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/3/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck3/3/linear" | |
| top: "bottleneck3/3/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/3/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck3/3/linear/bn" | |
| top: "bottleneck3/3/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck3/3/sum" | |
| type: "Eltwise" | |
| bottom: "bottleneck3/2/sum" | |
| bottom: "bottleneck3/3/linear/bn" | |
| top: "bottleneck3/3/sum" | |
| eltwise_param { | |
| operation: SUM | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/1/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck3/3/sum" | |
| top: "bottleneck4/1/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 192 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/1/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck4/1/expand" | |
| top: "bottleneck4/1/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/1/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck4/1/expand/bn" | |
| top: "bottleneck4/1/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/1/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck4/1/expand/bn" | |
| top: "bottleneck4/1/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck4/1/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck4/1/expand/bn" | |
| top: "bottleneck4/1/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 192 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 192 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/1/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck4/1/dw" | |
| top: "bottleneck4/1/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/1/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck4/1/dw/bn" | |
| top: "bottleneck4/1/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/1/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck4/1/dw/bn" | |
| top: "bottleneck4/1/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck4/1/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck4/1/dw/bn" | |
| top: "bottleneck4/1/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/1/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck4/1/linear" | |
| top: "bottleneck4/1/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/1/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck4/1/linear/bn" | |
| top: "bottleneck4/1/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/2/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck4/1/linear/bn" | |
| top: "bottleneck4/2/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 384 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/2/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck4/2/expand" | |
| top: "bottleneck4/2/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/2/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck4/2/expand/bn" | |
| top: "bottleneck4/2/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/2/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck4/2/expand/bn" | |
| top: "bottleneck4/2/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck4/2/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck4/2/expand/bn" | |
| top: "bottleneck4/2/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 384 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 384 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/2/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck4/2/dw" | |
| top: "bottleneck4/2/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/2/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck4/2/dw/bn" | |
| top: "bottleneck4/2/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/2/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck4/2/dw/bn" | |
| top: "bottleneck4/2/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck4/2/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck4/2/dw/bn" | |
| top: "bottleneck4/2/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/2/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck4/2/linear" | |
| top: "bottleneck4/2/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/2/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck4/2/linear/bn" | |
| top: "bottleneck4/2/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/2/sum" | |
| type: "Eltwise" | |
| bottom: "bottleneck4/1/linear/bn" | |
| bottom: "bottleneck4/2/linear/bn" | |
| top: "bottleneck4/2/sum" | |
| eltwise_param { | |
| operation: SUM | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/3/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck4/2/sum" | |
| top: "bottleneck4/3/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 384 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/3/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck4/3/expand" | |
| top: "bottleneck4/3/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/3/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck4/3/expand/bn" | |
| top: "bottleneck4/3/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/3/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck4/3/expand/bn" | |
| top: "bottleneck4/3/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck4/3/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck4/3/expand/bn" | |
| top: "bottleneck4/3/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 384 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 384 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/3/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck4/3/dw" | |
| top: "bottleneck4/3/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/3/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck4/3/dw/bn" | |
| top: "bottleneck4/3/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/3/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck4/3/dw/bn" | |
| top: "bottleneck4/3/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck4/3/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck4/3/dw/bn" | |
| top: "bottleneck4/3/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/3/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck4/3/linear" | |
| top: "bottleneck4/3/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/3/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck4/3/linear/bn" | |
| top: "bottleneck4/3/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/3/sum" | |
| type: "Eltwise" | |
| bottom: "bottleneck4/2/sum" | |
| bottom: "bottleneck4/3/linear/bn" | |
| top: "bottleneck4/3/sum" | |
| eltwise_param { | |
| operation: SUM | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/4/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck4/3/sum" | |
| top: "bottleneck4/4/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 384 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/4/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck4/4/expand" | |
| top: "bottleneck4/4/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/4/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck4/4/expand/bn" | |
| top: "bottleneck4/4/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/4/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck4/4/expand/bn" | |
| top: "bottleneck4/4/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck4/4/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck4/4/expand/bn" | |
| top: "bottleneck4/4/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 384 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 384 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/4/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck4/4/dw" | |
| top: "bottleneck4/4/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/4/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck4/4/dw/bn" | |
| top: "bottleneck4/4/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/4/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck4/4/dw/bn" | |
| top: "bottleneck4/4/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck4/4/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck4/4/dw/bn" | |
| top: "bottleneck4/4/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/4/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck4/4/linear" | |
| top: "bottleneck4/4/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/4/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck4/4/linear/bn" | |
| top: "bottleneck4/4/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck4/4/sum" | |
| type: "Eltwise" | |
| bottom: "bottleneck4/3/sum" | |
| bottom: "bottleneck4/4/linear/bn" | |
| top: "bottleneck4/4/sum" | |
| eltwise_param { | |
| operation: SUM | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/1/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck4/4/sum" | |
| top: "bottleneck5/1/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 384 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/1/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck5/1/expand" | |
| top: "bottleneck5/1/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/1/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck5/1/expand/bn" | |
| top: "bottleneck5/1/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/1/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck5/1/expand/bn" | |
| top: "bottleneck5/1/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck5/1/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck5/1/expand/bn" | |
| top: "bottleneck5/1/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 384 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 384 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/1/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck5/1/dw" | |
| top: "bottleneck5/1/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/1/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck5/1/dw/bn" | |
| top: "bottleneck5/1/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/1/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck5/1/dw/bn" | |
| top: "bottleneck5/1/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck5/1/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck5/1/dw/bn" | |
| top: "bottleneck5/1/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 96 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/1/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck5/1/linear" | |
| top: "bottleneck5/1/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/1/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck5/1/linear/bn" | |
| top: "bottleneck5/1/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/2/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck5/1/linear/bn" | |
| top: "bottleneck5/2/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 576 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/2/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck5/2/expand" | |
| top: "bottleneck5/2/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/2/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck5/2/expand/bn" | |
| top: "bottleneck5/2/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/2/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck5/2/expand/bn" | |
| top: "bottleneck5/2/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck5/2/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck5/2/expand/bn" | |
| top: "bottleneck5/2/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 576 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 576 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/2/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck5/2/dw" | |
| top: "bottleneck5/2/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/2/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck5/2/dw/bn" | |
| top: "bottleneck5/2/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/2/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck5/2/dw/bn" | |
| top: "bottleneck5/2/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck5/2/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck5/2/dw/bn" | |
| top: "bottleneck5/2/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 96 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/2/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck5/2/linear" | |
| top: "bottleneck5/2/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/2/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck5/2/linear/bn" | |
| top: "bottleneck5/2/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/2/sum" | |
| type: "Eltwise" | |
| bottom: "bottleneck5/1/linear/bn" | |
| bottom: "bottleneck5/2/linear/bn" | |
| top: "bottleneck5/2/sum" | |
| eltwise_param { | |
| operation: SUM | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/3/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck5/2/sum" | |
| top: "bottleneck5/3/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 576 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/3/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck5/3/expand" | |
| top: "bottleneck5/3/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/3/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck5/3/expand/bn" | |
| top: "bottleneck5/3/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/3/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck5/3/expand/bn" | |
| top: "bottleneck5/3/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck5/3/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck5/3/expand/bn" | |
| top: "bottleneck5/3/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 576 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 576 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/3/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck5/3/dw" | |
| top: "bottleneck5/3/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/3/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck5/3/dw/bn" | |
| top: "bottleneck5/3/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/3/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck5/3/dw/bn" | |
| top: "bottleneck5/3/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck5/3/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck5/3/dw/bn" | |
| top: "bottleneck5/3/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 96 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/3/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck5/3/linear" | |
| top: "bottleneck5/3/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/3/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck5/3/linear/bn" | |
| top: "bottleneck5/3/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/3/sum" | |
| type: "Eltwise" | |
| bottom: "bottleneck5/2/sum" | |
| bottom: "bottleneck5/3/linear/bn" | |
| top: "bottleneck5/3/sum" | |
| eltwise_param { | |
| operation: SUM | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/4/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck5/3/sum" | |
| top: "bottleneck5/4/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 576 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/4/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck5/4/expand" | |
| top: "bottleneck5/4/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/4/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck5/4/expand/bn" | |
| top: "bottleneck5/4/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/4/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck5/4/expand/bn" | |
| top: "bottleneck5/4/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck5/4/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck5/4/expand/bn" | |
| top: "bottleneck5/4/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 576 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 576 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/4/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck5/4/dw" | |
| top: "bottleneck5/4/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/4/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck5/4/dw/bn" | |
| top: "bottleneck5/4/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/4/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck5/4/dw/bn" | |
| top: "bottleneck5/4/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck5/4/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck5/4/dw/bn" | |
| top: "bottleneck5/4/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 96 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/4/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck5/4/linear" | |
| top: "bottleneck5/4/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/4/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck5/4/linear/bn" | |
| top: "bottleneck5/4/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck5/4/sum" | |
| type: "Eltwise" | |
| bottom: "bottleneck5/3/sum" | |
| bottom: "bottleneck5/4/linear/bn" | |
| top: "bottleneck5/4/sum" | |
| eltwise_param { | |
| operation: SUM | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/1/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck5/4/sum" | |
| top: "bottleneck6/1/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 576 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/1/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck6/1/expand" | |
| top: "bottleneck6/1/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/1/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck6/1/expand/bn" | |
| top: "bottleneck6/1/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/1/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck6/1/expand/bn" | |
| top: "bottleneck6/1/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck6/1/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck6/1/expand/bn" | |
| top: "bottleneck6/1/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 576 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 576 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/1/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck6/1/dw" | |
| top: "bottleneck6/1/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/1/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck6/1/dw/bn" | |
| top: "bottleneck6/1/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/1/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck6/1/dw/bn" | |
| top: "bottleneck6/1/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck6/1/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck6/1/dw/bn" | |
| top: "bottleneck6/1/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 160 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/1/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck6/1/linear" | |
| top: "bottleneck6/1/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/1/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck6/1/linear/bn" | |
| top: "bottleneck6/1/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/2/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck6/1/linear/bn" | |
| top: "bottleneck6/2/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 960 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/2/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck6/2/expand" | |
| top: "bottleneck6/2/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/2/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck6/2/expand/bn" | |
| top: "bottleneck6/2/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/2/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck6/2/expand/bn" | |
| top: "bottleneck6/2/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck6/2/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck6/2/expand/bn" | |
| top: "bottleneck6/2/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 960 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 960 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/2/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck6/2/dw" | |
| top: "bottleneck6/2/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/2/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck6/2/dw/bn" | |
| top: "bottleneck6/2/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/2/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck6/2/dw/bn" | |
| top: "bottleneck6/2/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck6/2/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck6/2/dw/bn" | |
| top: "bottleneck6/2/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 160 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/2/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck6/2/linear" | |
| top: "bottleneck6/2/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/2/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck6/2/linear/bn" | |
| top: "bottleneck6/2/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/2/sum" | |
| type: "Eltwise" | |
| bottom: "bottleneck6/1/linear/bn" | |
| bottom: "bottleneck6/2/linear/bn" | |
| top: "bottleneck6/2/sum" | |
| eltwise_param { | |
| operation: SUM | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/3/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck6/2/sum" | |
| top: "bottleneck6/3/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 960 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/3/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck6/3/expand" | |
| top: "bottleneck6/3/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/3/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck6/3/expand/bn" | |
| top: "bottleneck6/3/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/3/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck6/3/expand/bn" | |
| top: "bottleneck6/3/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck6/3/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck6/3/expand/bn" | |
| top: "bottleneck6/3/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 960 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 960 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/3/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck6/3/dw" | |
| top: "bottleneck6/3/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/3/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck6/3/dw/bn" | |
| top: "bottleneck6/3/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/3/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck6/3/dw/bn" | |
| top: "bottleneck6/3/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck6/3/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck6/3/dw/bn" | |
| top: "bottleneck6/3/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 160 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/3/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck6/3/linear" | |
| top: "bottleneck6/3/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/3/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck6/3/linear/bn" | |
| top: "bottleneck6/3/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck6/3/sum" | |
| type: "Eltwise" | |
| bottom: "bottleneck6/2/sum" | |
| bottom: "bottleneck6/3/linear/bn" | |
| top: "bottleneck6/3/sum" | |
| eltwise_param { | |
| operation: SUM | |
| } | |
| } | |
| layer { | |
| name: "bottleneck7/expand" | |
| type: "Convolution" | |
| bottom: "bottleneck6/3/sum" | |
| top: "bottleneck7/expand" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 960 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck7/expand/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck7/expand" | |
| top: "bottleneck7/expand/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck7/expand/scale" | |
| type: "Scale" | |
| bottom: "bottleneck7/expand/bn" | |
| top: "bottleneck7/expand/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck7/expand/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck7/expand/bn" | |
| top: "bottleneck7/expand/bn" | |
| } | |
| layer { | |
| name: "bottleneck7/dw" | |
| type: "Convolution" | |
| bottom: "bottleneck7/expand/bn" | |
| top: "bottleneck7/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 960 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 960 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck7/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck7/dw" | |
| top: "bottleneck7/dw/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck7/dw/scale" | |
| type: "Scale" | |
| bottom: "bottleneck7/dw/bn" | |
| top: "bottleneck7/dw/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "bottleneck7/dw/relu" | |
| type: "ReLU" | |
| bottom: "bottleneck7/dw/bn" | |
| top: "bottleneck7/dw/bn" | |
| } | |
| layer { | |
| name: "bottleneck7/linear" | |
| type: "Convolution" | |
| bottom: "bottleneck7/dw/bn" | |
| top: "bottleneck7/linear" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 320 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bottleneck7/linear/bn" | |
| type: "BatchNorm" | |
| bottom: "bottleneck7/linear" | |
| top: "bottleneck7/linear/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "bottleneck7/linear/scale" | |
| type: "Scale" | |
| bottom: "bottleneck7/linear/bn" | |
| top: "bottleneck7/linear/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "conv8" | |
| type: "Convolution" | |
| bottom: "bottleneck7/linear/bn" | |
| top: "conv8" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 1280 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv8/bn" | |
| type: "BatchNorm" | |
| bottom: "conv8" | |
| top: "conv8/bn" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| } | |
| layer { | |
| name: "conv8/scale" | |
| type: "Scale" | |
| bottom: "conv8/bn" | |
| top: "conv8/bn" | |
| scale_param { | |
| bias_term: true | |
| } | |
| } | |
| layer { | |
| name: "conv8/relu" | |
| type: "ReLU" | |
| bottom: "conv8/bn" | |
| top: "conv8/bn" | |
| } | |
| layer { | |
| name: "pool8" | |
| type: "Pooling" | |
| bottom: "conv8/bn" | |
| top: "pool8" | |
| pooling_param { | |
| pool: AVE | |
| global_pooling: true | |
| } | |
| } | |
| layer { | |
| name: "fc10" | |
| type: "InnerProduct" | |
| bottom: "pool8" | |
| top: "fc10" | |
| inner_product_param { | |
| num_output: 1000 | |
| } | |
| } | |
| layer { | |
| name: "loss" | |
| type: "SoftmaxWithLoss" | |
| bottom: "data" | |
| bottom: "label" | |
| top: "loss/loss" | |
| } | |
| layer { | |
| name: "accuracy/top1" | |
| type: "Accuracy" | |
| bottom: "data" | |
| bottom: "label" | |
| top: "acc@1" | |
| accuracy_param { | |
| top_k: 1 | |
| } | |
| } | |
| layer { | |
| name: "accuracy/top5" | |
| type: "Accuracy" | |
| bottom: "data" | |
| bottom: "label" | |
| top: "acc@5" | |
| accuracy_param { | |
| top_k: 5 | |
| } | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment