Created
October 17, 2025 17:20
-
-
Save qgallouedec/40e3b77da1504e3aacd2421a838ab9d9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # coding=utf-8 | |
| # Copyright 2025 The HuggingFace Inc. team | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import argparse | |
| import time | |
| from torch.nn.utils.rnn import pad_sequence | |
| import datasets | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from transformers.generation import GenerationConfig | |
| MODEL_ID = "Qwen/Qwen3-4B-Instruct-2507" | |
| DISPLAYED_SAMPLES = 3 | |
| if __name__ == "__main__": | |
| # Parse args | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--num-blocks", "-n", type=int, default=None) | |
| parser.add_argument("--max-batch-tokens", "-b", type=int, default=None) | |
| parser.add_argument("--attn", type=str, default="kernels-community/flash-attn", help="Attention implementation") | |
| parser.add_argument("--samples", type=int, default=500) | |
| parser.add_argument("--max-new-tokens", type=int, default=32) | |
| args = parser.parse_args() | |
| # Prepare model | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| attn_implementation=args.attn, | |
| device_map="cuda", | |
| dtype=torch.bfloat16, | |
| ) | |
| model = model.eval() | |
| # Prepare tokenizer and dataset | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="left") | |
| dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test") | |
| dataset = dataset.select(range(args.samples)) | |
| tokenized_datasets = dataset.map(lambda x: tokenizer(x["question"]), batched=True) | |
| simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets] | |
| # Prepare generation config | |
| generation_config = GenerationConfig( | |
| max_new_tokens=args.max_new_tokens, | |
| use_cuda_graph=False, # Not supported for simple version | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.pad_token_id, | |
| do_sample=False, | |
| num_blocks=args.num_blocks, | |
| max_batch_tokens=args.max_batch_tokens, | |
| ) | |
| # Warmup iterations | |
| input_ids = [torch.tensor(xx, device="cuda") for xx in simple_batch_inputs[: min(5, args.samples)]] | |
| attention_mask = [torch.ones_like(xx) for xx in input_ids] | |
| input_ids = pad_sequence(input_ids, batch_first=True, padding_value=tokenizer.pad_token_id, padding_side="left") | |
| attention_mask = pad_sequence(attention_mask, batch_first=True, padding_value=0, padding_side="left") | |
| _ = model.generate( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| generation_config=generation_config, | |
| ) | |
| input_ids = [torch.tensor(xx, device="cuda") for xx in simple_batch_inputs] | |
| attention_mask = [torch.ones_like(xx) for xx in input_ids] | |
| input_ids = pad_sequence(input_ids, batch_first=True, padding_value=tokenizer.pad_token_id, padding_side="left") | |
| attention_mask = pad_sequence(attention_mask, batch_first=True, padding_value=0, padding_side="left") | |
| # Actual batch generation | |
| print("--- Running Generation Example ---") | |
| torch.cuda.synchronize() | |
| start_time = time.time() | |
| outputs = model.generate( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| generation_config=generation_config, | |
| ) | |
| torch.cuda.synchronize() | |
| end_time = time.time() | |
| print("Done with generation.") | |
| completion_ids = outputs[:, input_ids.shape[1]:] | |
| prompts = tokenizer.batch_decode(input_ids, skip_special_tokens=True) | |
| completions = tokenizer.batch_decode(completion_ids, skip_special_tokens=True) | |
| # Decode outputs | |
| token_count = args.max_new_tokens * args.samples | |
| for i, (prompt, completion) in enumerate(zip(prompts, completions)): | |
| # Display sample if asked | |
| if i < DISPLAYED_SAMPLES: | |
| print("-" * 20) | |
| print(f"Input: {prompt}") | |
| print(f"Output: {completion}") | |
| # Compute stats and maybe print them | |
| gen_time = end_time - start_time | |
| tok_per_sec = token_count / gen_time | |
| print("-" * 20) | |
| print("--- Finished Generation Example ---\n") | |
| print(f"Generation took: {gen_time:.2f} seconds for {token_count} tokens. {tok_per_sec:.2f}tok/s") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment