Skip to content

Instantly share code, notes, and snippets.

@pyrolitic
Created November 20, 2017 12:29
Show Gist options
  • Select an option

  • Save pyrolitic/ad2eed3fb83a5f4c200bb99cfa364590 to your computer and use it in GitHub Desktop.

Select an option

Save pyrolitic/ad2eed3fb83a5f4c200bb99cfa364590 to your computer and use it in GitHub Desktop.
name: "DBN_DBN_128x128_train"
layer {
name: "data"
type: "ImageData"
top: "data"
transform_param {
scale: 0.00390625
crop_size: 128
}
image_data_param {
source: "/home/caffemaker/caffe/dataset/blurred+sharp/train.txt"
batch_size: 48
new_height: 128
new_width: 128
label: false
}
}
layer {
name: "label"
type: "ImageData"
top: "label"
transform_param {
scale: 0.00390625
crop_size: 128
}
image_data_param {
source: "/home/caffemaker/caffe/dataset/blurred+sharp/train_label.txt"
batch_size: 48
new_height: 128
new_width: 128
label: false
}
}
layer {
name: "flat_conv0"
type: "Convolution"
bottom: "data"
top: "flat_conv0"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv0_bn"
type: "BatchNorm"
bottom: "flat_conv0"
top: "flat_conv0"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv0_scale"
type: "Scale"
bottom: "flat_conv0"
top: "flat_conv0"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv0_relu"
type: "ReLU"
bottom: "flat_conv0"
top: "flat_conv0"
}
layer {
name: "down_conv1"
type: "Convolution"
bottom: "flat_conv0"
top: "down_conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "xavier"
}
}
}
layer {
name: "down_conv1_bn"
type: "BatchNorm"
bottom: "down_conv1"
top: "down_conv1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "down_conv1_scale"
type: "Scale"
bottom: "down_conv1"
top: "down_conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "down_conv1_relu"
type: "ReLU"
bottom: "down_conv1"
top: "down_conv1"
}
layer {
name: "flat_conv1_1"
type: "Convolution"
bottom: "down_conv1"
top: "flat_conv1_1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv1_1_bn"
type: "BatchNorm"
bottom: "flat_conv1_1"
top: "flat_conv1_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv1_1_scale"
type: "Scale"
bottom: "flat_conv1_1"
top: "flat_conv1_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv1_1_relu"
type: "ReLU"
bottom: "flat_conv1_1"
top: "flat_conv1_1"
}
layer {
name: "flat_conv1_2"
type: "Convolution"
bottom: "flat_conv1_1"
top: "flat_conv1_2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv1_2_bn"
type: "BatchNorm"
bottom: "flat_conv1_2"
top: "flat_conv1_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv1_2_scale"
type: "Scale"
bottom: "flat_conv1_2"
top: "flat_conv1_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv1_2_relu"
type: "ReLU"
bottom: "flat_conv1_2"
top: "flat_conv1_2"
}
layer {
name: "down_conv2"
type: "Convolution"
bottom: "flat_conv1_2"
top: "down_conv2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "xavier"
}
}
}
layer {
name: "down_conv2_bn"
type: "BatchNorm"
bottom: "down_conv2"
top: "down_conv2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "down_conv2_scale"
type: "Scale"
bottom: "down_conv2"
top: "down_conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "down_conv2_relu"
type: "ReLU"
bottom: "down_conv2"
top: "down_conv2"
}
layer {
name: "flat_conv2_1"
type: "Convolution"
bottom: "down_conv2"
top: "flat_conv2_1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv2_1_bn"
type: "BatchNorm"
bottom: "flat_conv2_1"
top: "flat_conv2_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv2_1_scale"
type: "Scale"
bottom: "flat_conv2_1"
top: "flat_conv2_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv2_1_relu"
type: "ReLU"
bottom: "flat_conv2_1"
top: "flat_conv2_1"
}
layer {
name: "flat_conv2_2"
type: "Convolution"
bottom: "flat_conv2_1"
top: "flat_conv2_2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv2_2_bn"
type: "BatchNorm"
bottom: "flat_conv2_2"
top: "flat_conv2_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv2_2_scale"
type: "Scale"
bottom: "flat_conv2_2"
top: "flat_conv2_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv2_2_relu"
type: "ReLU"
bottom: "flat_conv2_2"
top: "flat_conv2_2"
}
layer {
name: "flat_conv2_3"
type: "Convolution"
bottom: "flat_conv2_2"
top: "flat_conv2_3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv2_3_bn"
type: "BatchNorm"
bottom: "flat_conv2_3"
top: "flat_conv2_3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv2_3_scale"
type: "Scale"
bottom: "flat_conv2_3"
top: "flat_conv2_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv2_3_relu"
type: "ReLU"
bottom: "flat_conv2_3"
top: "flat_conv2_3"
}
layer {
name: "down_conv3"
type: "Convolution"
bottom: "flat_conv2_3"
top: "down_conv3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "xavier"
}
}
}
layer {
name: "down_conv3_bn"
type: "BatchNorm"
bottom: "down_conv3"
top: "down_conv3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "down_conv3_scale"
type: "Scale"
bottom: "down_conv3"
top: "down_conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "down_conv3_relu"
type: "ReLU"
bottom: "down_conv3"
top: "down_conv3"
}
layer {
name: "flat_conv3_1"
type: "Convolution"
bottom: "down_conv3"
top: "flat_conv3_1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv3_1_bn"
type: "BatchNorm"
bottom: "flat_conv3_1"
top: "flat_conv3_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv3_1_scale"
type: "Scale"
bottom: "flat_conv3_1"
top: "flat_conv3_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv3_1_relu"
type: "ReLU"
bottom: "flat_conv3_1"
top: "flat_conv3_1"
}
layer {
name: "flat_conv3_2"
type: "Convolution"
bottom: "flat_conv3_1"
top: "flat_conv3_2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv3_2_bn"
type: "BatchNorm"
bottom: "flat_conv3_2"
top: "flat_conv3_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv3_2_scale"
type: "Scale"
bottom: "flat_conv3_2"
top: "flat_conv3_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv3_2_relu"
type: "ReLU"
bottom: "flat_conv3_2"
top: "flat_conv3_2"
}
layer {
name: "flat_conv3_3"
type: "Convolution"
bottom: "flat_conv3_2"
top: "flat_conv3_3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv3_3_bn"
type: "BatchNorm"
bottom: "flat_conv3_3"
top: "flat_conv3_3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv3_3_scale"
type: "Scale"
bottom: "flat_conv3_3"
top: "flat_conv3_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv3_3_relu"
type: "ReLU"
bottom: "flat_conv3_3"
top: "flat_conv3_3"
}
layer {
name: "up_conv1"
type: "Deconvolution"
bottom: "flat_conv3_3"
top: "up_conv1"
param {
lr_mult: 0
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 4
stride: 2
weight_filler {
type: "xavier"
}
}
}
layer {
name: "up_conv1_bn"
type: "BatchNorm"
bottom: "up_conv1"
top: "up_conv1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "up_conv1_scale"
type: "Scale"
bottom: "up_conv1"
top: "up_conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "up1_eltwise"
type: "Eltwise"
bottom: "up_conv1"
bottom: "flat_conv2_3"
top: "up1_eltwise"
}
layer {
name: "up1_eltwise_relu"
type: "ReLU"
bottom: "up1_eltwise"
top: "up1_eltwise"
}
layer {
name: "flat_conv4_1"
type: "Convolution"
bottom: "up1_eltwise"
top: "flat_conv4_1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv4_1_bn"
type: "BatchNorm"
bottom: "flat_conv4_1"
top: "flat_conv4_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv4_1_scale"
type: "Scale"
bottom: "flat_conv4_1"
top: "flat_conv4_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv4_1_relu"
type: "ReLU"
bottom: "flat_conv4_1"
top: "flat_conv4_1"
}
layer {
name: "flat_conv4_2"
type: "Convolution"
bottom: "flat_conv4_1"
top: "flat_conv4_2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv4_2_bn"
type: "BatchNorm"
bottom: "flat_conv4_2"
top: "flat_conv4_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv4_2_scale"
type: "Scale"
bottom: "flat_conv4_2"
top: "flat_conv4_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv4_2_relu"
type: "ReLU"
bottom: "flat_conv4_2"
top: "flat_conv4_2"
}
layer {
name: "flat_conv4_3"
type: "Convolution"
bottom: "flat_conv4_2"
top: "flat_conv4_3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv4_3_bn"
type: "BatchNorm"
bottom: "flat_conv4_3"
top: "flat_conv4_3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv4_3_scale"
type: "Scale"
bottom: "flat_conv4_3"
top: "flat_conv4_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv4_3_relu"
type: "ReLU"
bottom: "flat_conv4_3"
top: "flat_conv4_3"
}
layer {
name: "up_conv2"
type: "Deconvolution"
bottom: "flat_conv4_3"
top: "up_conv2"
param {
lr_mult: 0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 4
stride: 2
weight_filler {
type: "xavier"
}
}
}
layer {
name: "up_conv2_bn"
type: "BatchNorm"
bottom: "up_conv2"
top: "up_conv2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "up_conv2_scale"
type: "Scale"
bottom: "up_conv2"
top: "up_conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "up2_eltwise"
type: "Eltwise"
bottom: "up_conv2"
bottom: "flat_conv1_2"
top: "up2_eltwise"
}
layer {
name: "up2_eltwise_relu"
type: "ReLU"
bottom: "up2_eltwise"
top: "up2_eltwise"
}
layer {
name: "flat_conv5_1"
type: "Convolution"
bottom: "up2_eltwise"
top: "flat_conv5_1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv5_1_bn"
type: "BatchNorm"
bottom: "flat_conv5_1"
top: "flat_conv5_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv5_1_scale"
type: "Scale"
bottom: "flat_conv5_1"
top: "flat_conv5_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv5_1_relu"
type: "ReLU"
bottom: "flat_conv5_1"
top: "flat_conv5_1"
}
layer {
name: "flat_conv5_2"
type: "Convolution"
bottom: "flat_conv5_1"
top: "flat_conv5_2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv5_2_bn"
type: "BatchNorm"
bottom: "flat_conv5_2"
top: "flat_conv5_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv5_2_scale"
type: "Scale"
bottom: "flat_conv5_2"
top: "flat_conv5_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv5_2_relu"
type: "ReLU"
bottom: "flat_conv5_2"
top: "flat_conv5_2"
}
layer {
name: "up_conv3"
type: "Deconvolution"
bottom: "flat_conv5_2"
top: "up_conv3"
param {
lr_mult: 0
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 4
stride: 2
weight_filler {
type: "xavier"
}
}
}
layer {
name: "up_conv3_bn"
type: "BatchNorm"
bottom: "up_conv3"
top: "up_conv3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "up_conv3_scale"
type: "Scale"
bottom: "up_conv3"
top: "up_conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "up3_eltwise"
type: "Eltwise"
bottom: "up_conv3"
bottom: "flat_conv0"
top: "up3_eltwise"
}
layer {
name: "up3_eltwise_relu"
type: "ReLU"
bottom: "up3_eltwise"
top: "up3_eltwise"
}
layer {
name: "flat_conv6_1"
type: "Convolution"
bottom: "up3_eltwise"
top: "flat_conv6_1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 15
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv6_1_bn"
type: "BatchNorm"
bottom: "flat_conv6_1"
top: "flat_conv6_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv6_1_scale"
type: "Scale"
bottom: "flat_conv6_1"
top: "flat_conv6_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv6_1_relu"
type: "ReLU"
bottom: "flat_conv6_1"
top: "flat_conv6_1"
}
layer {
name: "flat_conv6_2"
type: "Convolution"
bottom: "flat_conv6_1"
top: "flat_conv6_2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 3
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
}
}
layer {
name: "flat_conv6_2_bn"
type: "BatchNorm"
bottom: "flat_conv6_2"
top: "flat_conv6_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
eps: 0.001
}
}
layer {
name: "flat_conv6_2_scale"
type: "Scale"
bottom: "flat_conv6_2"
top: "flat_conv6_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
type: "constant"
value: 1.0
}
bias_term: true
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "flat_conv6_2_relu"
type: "ReLU"
bottom: "flat_conv6_2"
top: "flat_conv6_2"
}
layer {
name: "loss"
type: "EuclideanLoss"
bottom: "flat_conv6_2"
bottom: "label"
top: "loss"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment