Created
March 24, 2023 01:34
-
-
Save pranavsharma/bfa09aaf99fd774c2c013701c995bbfe to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #include <assert.h> | |
| #include <onnxruntime_cxx_api.h> | |
| #include <cmath> | |
| #include <stdlib.h> | |
| #include <stdio.h> | |
| #include <vector> | |
| #include <iostream> | |
| using namespace Ort; | |
| int main(int argc, char* argv[]) { | |
| std::cout << "Start\n"; | |
| Env env(ORT_LOGGING_LEVEL_VERBOSE, "test"); | |
| SessionOptions session_options; | |
| session_options.DisableCpuMemArena(); | |
| session_options.DisableMemPattern(); | |
| Session session(env, "/home/pranav/bing_ads_model/classifier.onnx", session_options); | |
| size_t input_tensor_size = 1*12; | |
| std::vector<int64_t> input_tensor_values(input_tensor_size); | |
| int j = 0; | |
| for (int i = 0; i < input_tensor_size; ++i) { | |
| input_tensor_values[i] = j++; | |
| } | |
| std::vector<const char*> output_node_names{ "dummy_score", "qvec"}; | |
| std::vector<int64_t> input_node_dims{ 1, 12 }; | |
| MemoryInfo memory_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault); | |
| auto input_tensor1 = Value::CreateTensor(memory_info, input_tensor_values.data(), | |
| input_tensor_size * sizeof(int64_t), input_node_dims.data(), 2, ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64); | |
| auto input_tensor2 = Value::CreateTensor(memory_info, input_tensor_values.data(), | |
| input_tensor_size * sizeof(int64_t), input_node_dims.data(), 2, ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64); | |
| std::vector<Value> input_tensor_list; | |
| input_tensor_list.push_back(std::move(input_tensor1)); | |
| input_tensor_list.push_back(std::move(input_tensor2)); | |
| std::vector<const char*> input_node_names{"qseq", "qmask"}; | |
| auto ret = session.Run(RunOptions{nullptr}, input_node_names.data(), input_tensor_list.data(), | |
| input_tensor_list.size(), output_node_names.data(), output_node_names.size()); | |
| std::cout << "Done\n"; | |
| return 0; | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment