Created
June 11, 2021 18:38
-
-
Save overtunned/e2011af898f9f028917df9d5ee81a6b5 to your computer and use it in GitHub Desktop.
confusion matrix for keras
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def plot_confusion_matrix(cm, classes, | |
| normalize=False, | |
| title='Confusion matrix', | |
| cmap=plt.cm.Blues): | |
| """ | |
| This function prints and plots the confusion matrix. | |
| Normalization can be applied by setting `normalize=True`. | |
| """ | |
| plt.figure(figsize = (5,5)) | |
| plt.imshow(cm, interpolation='nearest', cmap=cmap) | |
| plt.title(title) | |
| plt.colorbar() | |
| tick_marks = np.arange(len(classes)) | |
| plt.xticks(tick_marks, classes, rotation=90) | |
| plt.yticks(tick_marks, classes) | |
| if normalize: | |
| cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] | |
| thresh = cm.max() / 2. | |
| for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): | |
| plt.text(j, i, cm[i, j], | |
| horizontalalignment="center", | |
| color="white" if cm[i, j] > thresh else "black") | |
| plt.tight_layout() | |
| plt.ylabel('True label') | |
| plt.xlabel('Predicted label') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment