Created
September 25, 2025 11:02
-
-
Save ottobricks/30031f444031d64f169d7b39b13faa6a to your computer and use it in GitHub Desktop.
Mock users and transfers Pandas DataFrames
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pandas as pd | |
| import numpy as np | |
| from faker import Faker | |
| import uuid | |
| import datetime | |
| fake = Faker() | |
| def generate_user_data(num_users: int) -> pd.DataFrame: | |
| print(f"Generating {num_users} user records...") | |
| COUNTRIES = ['GB', 'US', 'DE', 'AU', 'SG', 'BE', 'FR', 'CA'] | |
| COUNTRY_PROBS = [0.3, 0.2, 0.15, 0.1, 0.1, 0.05, 0.05, 0.05] | |
| ACCOUNT_TYPES = ['Personal', 'Business'] | |
| ACCOUNT_TYPE_PROBS = [0.85, 0.15] # 85% Personal, 15% Business | |
| KYC_STATUSES = ['Verified', 'Pending', 'Rejected'] | |
| KYC_STATUS_PROBS = [0.9, 0.07, 0.03] # Most users are verified | |
| users_data = [] | |
| for _ in range(num_users): | |
| user = { | |
| 'user_id': str(uuid.uuid4()), | |
| 'first_name': fake.first_name(), | |
| 'last_name': fake.last_name(), | |
| 'email': fake.unique.email(), | |
| 'country_of_residence': np.random.choice(COUNTRIES, p=COUNTRY_PROBS), | |
| 'account_type': np.random.choice(ACCOUNT_TYPES, p=ACCOUNT_TYPE_PROBS), | |
| 'kyc_status': np.random.choice(KYC_STATUSES, p=KYC_STATUS_PROBS), | |
| 'registration_date': fake.date_time_between(start_date='-3y', end_date='now', tzinfo=datetime.timezone.utc), | |
| 'label': np.random.choice([0, 1], p=[0.9, 0.1]) | |
| } | |
| users_data.append(user) | |
| return pd.DataFrame(users_data) | |
| def generate_transfer_data(num_transfers: int, users_df: pd.DataFrame) -> pd.DataFrame: | |
| print(f"\nGenerating {num_transfers} transfer records...") | |
| CURRENCIES = ['GBP', 'EUR', 'USD', 'AUD', 'JPY', 'CAD'] | |
| TRANSFER_STATUSES = ['COMPLETED', 'PENDING', 'CANCELLED', 'FAILED'] | |
| TRANSFER_STATUS_PROBS = [0.92, 0.03, 0.03, 0.02] # Most transfers complete | |
| exchange_rate = np.random.normal(loc=1.15, scale=0.05) | |
| user_ids = users_df['user_id'].tolist() | |
| transfers_data = [] | |
| for _ in range(num_transfers): | |
| sender_id, recipient_id = np.random.choice(user_ids, size=2, replace=False) | |
| source_amount = np.random.lognormal(mean=np.log(100), sigma=1.5) | |
| transfer = { | |
| 'transfer_id': str(uuid.uuid4()), | |
| 'sender_id': sender_id, | |
| 'recipient_id': recipient_id, | |
| 'source_currency': np.random.choice(CURRENCIES), | |
| 'target_currency': np.random.choice(CURRENCIES), | |
| 'source_amount': round(source_amount, 2), | |
| 'target_amount': round(source_amount * exchange_rate, 2), | |
| 'status': np.random.choice(TRANSFER_STATUSES, p=TRANSFER_STATUS_PROBS), | |
| 'created_at': fake.date_time_between(start_date='-2y', end_date='now', tzinfo=datetime.timezone.utc) | |
| } | |
| transfers_data.append(transfer) | |
| return pd.DataFrame(transfers_data) | |
| if __name__ == "__main__": | |
| NUM_USERS_TO_GENERATE = 500 | |
| NUM_TRANSFERS_TO_GENERATE = 2000 | |
| users_dataframe = generate_user_data(NUM_USERS_TO_GENERATE) | |
| transfers_dataframe = generate_transfer_data(NUM_TRANSFERS_TO_GENERATE, users_dataframe) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment