Updated 4/11/2018
Here's my experience of installing the NVIDIA CUDA kit 9.0 on a fresh install of Ubuntu Desktop 16.04.4 LTS.
| #include <chrono> | |
| #include <stdio.h> | |
| #include <stdlib.h> | |
| #include <string.h> | |
| #include <assert.h> | |
| #include <opencv2/core.hpp> | |
| #include <opencv2/imgcodecs.hpp> | |
| #include <opencv2/highgui.hpp> | |
| #include <opencv2/opencv.hpp> |
| from tqdm import tqdm | |
| import numpy as np | |
| import os | |
| import warnings | |
| def bb_intersection_over_union(A, B) -> float: | |
| xA = max(A[0], B[0]) | |
| yA = max(A[1], B[1]) | |
| xB = min(A[2], B[2]) |
| #include "common.h" | |
| #include "cudaUtility.h" | |
| #include "mathFunctions.h" | |
| #include "pluginImplement.h" | |
| #include "tensorNet.h" | |
| #include "loadImage.h" | |
| #include "imageBuffer.h" | |
| #include <chrono> | |
| #include <thread> | |
| #include <chrono> |
Updated 4/11/2018
Here's my experience of installing the NVIDIA CUDA kit 9.0 on a fresh install of Ubuntu Desktop 16.04.4 LTS.
| git clone https://github.com/Itseez/opencv.git --depth=1 | |
| git clone https://github.com/Itseez/opencv_contrib --depth=1 | |
| cd opencv | |
| mkdir build | |
| cd build | |
| cmake -D CMAKE_BUILD_TYPE=RELEASE \ | |
| -D CMAKE_INSTALL_PREFIX=/usr/local \ | |
| -D WITH_TBB=ON \ | |
| -D BUILD_NEW_PYTHON_SUPPORT=ON \ |
| # Source: | |
| https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_pets.md | |
| # Create data: | |
| python object_detection/dataset_tools/create_pascal_tf_record.py --data=/home/phatv/nghia/mxnet-yolo/data1/VOCdevkit/ --year=VOC2012 --output_path=val.record --set=val | |
| # Train: | |
| python train.py --logtostderr --train_dir=train/ --pipeline_config_path=train/ssd_mobilenet_v11_coco.config | |
| #combine ckpt to inference graph: |
| source: http://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html | |
| 2.3. Installing cuDNN on Linux | |
| The following steps describe how to build a cuDNN dependent program. | |
| Choose the installation method that meets your environment needs. | |
| For example, the tar file installation applies to all Linux platforms. | |
| The debian installation package applies to Ubuntu 14.04 and 16.04. | |
| In the following sections: | |
| your CUDA directory path is referred to as /usr/local/cuda/ | |
| your cuDNN download path is referred to as <cudnnpath> |