Skip to content

Instantly share code, notes, and snippets.

@nikopartanen
Forked from BrikerMan/w2v_visualizer-v2.py
Last active November 30, 2017 18:02
Show Gist options
  • Select an option

  • Save nikopartanen/3ba498ca39b55d483755498371ae77a3 to your computer and use it in GitHub Desktop.

Select an option

Save nikopartanen/3ba498ca39b55d483755498371ae77a3 to your computer and use it in GitHub Desktop.
Convert gensim word2vec to tensorboard visualized model, detail: https://eliyar.biz/using-pre-trained-gensim-word2vector-in-a-keras-model-and-visualizing/ This version contains small edits done by Niko Partanen
# encoding: utf-8
"""
@author: BrikerMan
@contact: eliyar917@gmail.com
@blog: https://eliyar.biz
@version: 1.0
@license: Apache Licence
@file: w2v_visualizer.py
@time: 2017/7/30 上午9:37
@comment: Modified by Niko Partanen in 30.11.2017
"""
import sys, os
from gensim.models import Word2Vec
import tensorflow as tf
import numpy as np
from tensorflow.contrib.tensorboard.plugins import projector
import gensim
def visualize(model, output_path):
meta_file = "w2x_metadata.tsv"
placeholder = np.zeros((len(model.wv.index2word), 300))
with open(os.path.join(output_path,meta_file), 'wb') as file_metadata:
for i, word in enumerate(model.wv.index2word):
placeholder[i] = model[word]
# temporary solution for https://github.com/tensorflow/tensorflow/issues/9094
if word == '':
print("Emply Line, should replecaed by any thing else, or will cause a bug of tensorboard")
file_metadata.write("{0}".format('<Empty Line>').encode('utf-8') + b'\n')
else:
file_metadata.write("{0}".format(word).encode('utf-8') + b'\n')
# define the model without training
sess = tf.InteractiveSession()
embedding = tf.Variable(placeholder, trainable = False, name = 'w2x_metadata')
tf.global_variables_initializer().run()
saver = tf.train.Saver()
writer = tf.summary.FileWriter(output_path, sess.graph)
# adding into projector
config = projector.ProjectorConfig()
embed = config.embeddings.add()
embed.tensor_name = 'w2x_metadata'
embed.metadata_path = meta_file
# Specify the width and height of a single thumbnail.
projector.visualize_embeddings(writer, config)
saver.save(sess, os.path.join(output_path,'w2x_metadata.ckpt'))
print('Run `tensorboard --logdir={0}` to run visualize result on tensorboard'.format(output_path))
if __name__ == "__main__":
"""
Just run `python w2v_visualizer.py word2vec.model visualize_result`
"""
try:
model_path = sys.argv[1]
output_path = sys.argv[2]
except:
print("Please provice model path and output path")
model = gensim.models.KeyedVectors.load_word2vec_format(model_path)
visualize(model, output_path)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment