Skip to content

Instantly share code, notes, and snippets.

View mrmaheshrajput's full-sized avatar
:shipit:

Mahesh Rajput mrmaheshrajput

:shipit:
View GitHub Profile
import asyncio
from typing import List, Dict
class AdvancedCodeAssistant(CodeAssistant):
"""Enhanced with parallel tool execution"""
async def search_codebase(self, query: str) -> List[Dict]:
"""Search entire codebase"""
return self.retrieve_context(query, k=5)
import os
import anthropic
from pathlib import Path
import tiktoken
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import faiss
import openai
import asyncio
import json
import sys
from typing import Optional, List
from contextlib import AsyncExitStack
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import ollama
from dotenv import load_dotenv
"""
MCP Observability Server
A Model Context Protocol server for observability and monitoring systems.
"""
import asyncio
import json
import logging
import random
import time
import asyncio
import json
from typing import Optional
from contextlib import AsyncExitStack
from dotenv import load_dotenv
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import ollama
import datetime
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("mcp-excel-server")
@mcp.tool()
def get_datetime() -> datetime.datetime:
"""Use this tool when the user wants to know today's date."""
"""
Source: https://github.com/modelcontextprotocol/quickstart-resources/blob/main/weather-server-python/weather.py
"""
rom typing import Any
import httpx
from mcp.server.fastmcp import FastMCP
# Initialize FastMCP server
mcp = FastMCP("weather")
def build_tsmixer_model(input_shape, forecast_horizon=1, hidden_dim=128, num_layers=2):
inputs = Input(shape=input_shape)
x = inputs
# Time mixing layers
for _ in range(num_layers):
# Mix across time dimension
time_mix = tf.keras.layers.Permute((2, 1))(x) # [batch, features, time]
time_mix = Dense(input_shape[0], activation='relu')(time_mix) # Project each feature across time
time_mix = tf.keras.layers.Permute((2, 1))(time_mix) # Back to [batch, time, features]
def build_tft_model(static_shape, past_shape, future_shape, forecast_horizon):
static_inputs = Input(shape=static_shape)
past_inputs = Input(shape=past_shape)
future_inputs = Input(shape=future_shape) # Known future covariates
static_context = Dense(64, activation='relu')(static_inputs)
past_selected = Dense(past_shape[-1], activation='sigmoid')(tf.concat([past_inputs, static_context], axis=-1))
past_weighted = past_inputs * past_selected
def create_patches(x, patch_len, stride=1):
"""Convert time series data into patches"""
patches = []
for i in range(0, x.shape[1] - patch_len + 1, stride):
patches.append(x[:, i:i+patch_len, :])
# Stack patches along a new dimension
patches = tf.stack(patches, axis=1)
# Reshape to [batch, num_patches, patch_len * channels]