-
-
Save mgeeky/3eb9e9caef9136d5b0f3b4dbd5ad77c4 to your computer and use it in GitHub Desktop.
Split large SharpHound datasets (JSON files) into smaller files that can more easily be imported into BloodHound. Especially useful due to the Electron memory limitations.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/python3 | |
| # Based on https://gist.github.com/deltronzero/7c23bacf97b4b61c7a2f2950ef6f35d8 | |
| # pip install simplejson | |
| import simplejson | |
| import sys | |
| def splitfile(file_name, object_limit): | |
| print(f"[*] Loading {file_name}") | |
| with open(file_name) as f: | |
| data = simplejson.load(f) | |
| total_objects = data['meta']['count'] | |
| file_type = data['meta']['type'] | |
| print(f"Total Objects: {total_objects}") | |
| object_count = 0 | |
| file_count = 0 | |
| while object_count < total_objects: | |
| a = {} | |
| a[file_type] = data[file_type][object_count:][:object_limit] | |
| object_count += len(a[file_type]) | |
| a['meta'] = data['meta'] | |
| a['meta']['count'] = object_count | |
| f_split = file_name.split("\\")[-1].split(".") | |
| file_name_out = f"{f_split[0]}_{file_count}.{f_split[1]}" | |
| print(f"[*] Writing {file_name_out} - {object_count} of {total_objects}") | |
| f_out = open(file_name_out, "w") | |
| simplejson.dump(a, f_out) | |
| f_out.close() | |
| file_count += 1 | |
| def main(): | |
| if len(sys.argv) < 2: | |
| print(sys.argv[0] + " filename.json [object_limit]") | |
| return | |
| if len(sys.argv) < 3: | |
| splitfile(sys.argv[1], 20000) | |
| else: | |
| splitfile(sys.argv[1], int(sys.argv[2])) | |
| if __name__ == "__main__": | |
| main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment