Created
September 4, 2019 07:04
-
-
Save maxkibble/8a0d362103ae3dc42e959eacb27b1e6a to your computer and use it in GitHub Desktop.
template for dinic algorithm, copy from tourist's submission (http://codeforces.com/contest/1198/submission/58006936)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| template <typename T> | |
| class flow_graph { | |
| public: | |
| static constexpr T eps = (T) 1e-9; | |
| struct edge { | |
| int from; | |
| int to; | |
| T c; | |
| T f; | |
| }; | |
| vector<vector<int>> g; | |
| vector<edge> edges; | |
| int n; | |
| int st; | |
| int fin; | |
| T flow; | |
| flow_graph(int _n, int _st, int _fin) : n(_n), st(_st), fin(_fin) { | |
| assert(0 <= st && st < n && 0 <= fin && fin < n && st != fin); | |
| g.resize(n); | |
| flow = 0; | |
| } | |
| void clear_flow() { | |
| for (const edge &e : edges) { | |
| e.f = 0; | |
| } | |
| flow = 0; | |
| } | |
| int add(int from, int to, T forward_cap, T backward_cap) { | |
| assert(0 <= from && from < n && 0 <= to && to < n); | |
| int id = (int) edges.size(); | |
| g[from].push_back(id); | |
| edges.push_back({from, to, forward_cap, 0}); | |
| g[to].push_back(id + 1); | |
| edges.push_back({to, from, backward_cap, 0}); | |
| return id; | |
| } | |
| }; | |
| template <typename T> | |
| class dinic { | |
| public: | |
| flow_graph<T> &g; | |
| vector<int> ptr; | |
| vector<int> d; | |
| vector<int> q; | |
| dinic(flow_graph<T> &_g) : g(_g) { | |
| ptr.resize(g.n); | |
| d.resize(g.n); | |
| q.resize(g.n); | |
| } | |
| bool expath() { | |
| fill(d.begin(), d.end(), -1); | |
| q[0] = g.fin; | |
| d[g.fin] = 0; | |
| int beg = 0, end = 1; | |
| while (beg < end) { | |
| int i = q[beg++]; | |
| for (int id : g.g[i]) { | |
| const auto &e = g.edges[id]; | |
| const auto &back = g.edges[id ^ 1]; | |
| if (back.c - back.f > g.eps && d[e.to] == -1) { | |
| d[e.to] = d[i] + 1; | |
| if (e.to == g.st) { | |
| return true; | |
| } | |
| q[end++] = e.to; | |
| } | |
| } | |
| } | |
| return false; | |
| } | |
| T dfs(int v, T w) { | |
| if (v == g.fin) { | |
| return w; | |
| } | |
| int &j = ptr[v]; | |
| while (j >= 0) { | |
| int id = g.g[v][j]; | |
| const auto &e = g.edges[id]; | |
| if (e.c - e.f > g.eps && d[e.to] == d[v] - 1) { | |
| T t = dfs(e.to, min(e.c - e.f, w)); | |
| if (t > g.eps) { | |
| g.edges[id].f += t; | |
| g.edges[id ^ 1].f -= t; | |
| return t; | |
| } | |
| } | |
| j--; | |
| } | |
| return 0; | |
| } | |
| T max_flow() { | |
| while (expath()) { | |
| for (int i = 0; i < g.n; i++) { | |
| ptr[i] = (int) g.g[i].size() - 1; | |
| } | |
| T big_add = 0; | |
| while (true) { | |
| T add = dfs(g.st, numeric_limits<T>::max()); | |
| if (add <= g.eps) { | |
| break; | |
| } | |
| big_add += add; | |
| } | |
| if (big_add <= g.eps) { | |
| break; | |
| } | |
| g.flow += big_add; | |
| } | |
| return g.flow; | |
| } | |
| vector<bool> min_cut() { | |
| max_flow(); | |
| vector<bool> ret(g.n); | |
| for (int i = 0; i < g.n; i++) { | |
| ret[i] = (d[i] != -1); | |
| } | |
| return ret; | |
| } | |
| }; | |
| // int main() { | |
| // int n, m; | |
| // // size: n + 1 (1-index), source: 1, target: n | |
| // flow_graph<long long> g(n + 1, 1, n); | |
| // dinic<long long> d(g); | |
| // cout << d.max_flow() << "\n"; | |
| // return 0; | |
| // } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment