Created
March 28, 2025 20:35
-
-
Save matteodefelice/b7785206b6dff207e726fbb716064805 to your computer and use it in GitHub Desktop.
mask xarray using regionmask
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # %% | |
| import xarray as xr | |
| import numpy as np | |
| import geopandas as gpd | |
| import regionmask | |
| # %% | |
| gd = xr.open_dataset("C:/Users/matte/data/tasmax_day_ACCESS-CM2_historical_r1i1p1f1_gn_1999.nc") | |
| # gd.coords['lon'] = (gd.coords['lon'] + 180) % 360 - 180 | |
| # gd = gd.sortby(gd.lon) | |
| # %% | |
| counties = gpd.read_file("cb_2018_us_county_20m.shp").iloc[120:121].to_crs('4326') | |
| # %% | |
| mask_counties = regionmask.from_geopandas( | |
| counties, | |
| names = "GEOID", | |
| abbrevs = "_from_name" | |
| ) | |
| # %% | |
| mask = mask_counties.mask(gd) | |
| print(mask) | |
| mask_co = gd.where(mask == 120)['tasmax'].dropna(dim = 'lat', how = 'all').dropna(dim = 'lon', how = 'all') | |
| mask_co.isel(time = 0).plot() | |
| # %% | |
| mask_co_ts = mask_co.mean(dim = ['lat', 'lon']) | |
| mask_co_ts.plot() | |
| # %% | |
| newlon = np.linspace(360 + counties.bounds['minx'].values[0], 360 + counties.bounds['maxx'].values[0], 20) | |
| newlat = np.linspace(counties.bounds['miny'].values[0], counties.bounds['maxy'].values[0], 20) | |
| gdinterp = gd.interp(lon=newlon, lat=newlat, method='linear') | |
| # %% HIGHRES | |
| mask = mask_counties.mask(gdinterp) | |
| mask_co = gdinterp.where(mask == 120)['tasmax'].dropna(dim = 'lat', how = 'all').dropna(dim = 'lon', how = 'all') | |
| mask_co.isel(time = 0).plot() | |
| # %% | |
| mask_co_ts = mask_co.mean(dim = ['lat', 'lon']) | |
| mask_co_ts.plot() | |
| # %% |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment