Setup a folder inside a repo with a specific commit of that repo.
git worktree add [-f] [--detach] [--checkout] [--lock] [-b ] []
Setup a folder inside a repo with a specific commit of that repo.
git worktree add [-f] [--detach] [--checkout] [--lock] [-b ] []
| export HADOOP_VERSION=2.9.1 | |
| export SPARK_VERSION=2.3.2 | |
| export AWS_ACCOUNT_ID=<your numeric AWS account id> | |
| export ECR_REGION=us-east-1 | |
| # Fetch and extract the spark source | |
| curl -L "https://archive.apache.org/dist/spark/spark-${SPARK_VERSION}/spark-${SPARK_VERSION}.tgz" | tar -xzvf - | |
| cd "spark-${SPARK_VERSION}" | |
| # set maven opts according to https://spark.apache.org/docs/latest/building-spark.html | |
| export MAVEN_OPTS="-Xmx2g -XX:ReservedCodeCacheSize=512m" |
UPDATED 22.11.2022
It's been two years since the last update, so here's the updated working script as per the comments below.
Thanks to BryanHaley for this.
setInterval(function () {
video = document.getElementsByTagName('ytd-playlist-video-renderer')[0];
video.querySelector('#primary button[aria-label="Action menu"]').click();| FROM rustlang/rust:nightly as builder | |
| WORKDIR /app/src | |
| RUN USER=root cargo new --bin ht | |
| COPY Cargo.toml Cargo.lock ./ht/ | |
| WORKDIR /app/src/ht | |
| RUN cargo build --release | |
| COPY ./ ./ | |
| RUN cargo build --release |
| # Below are the dependencies required for installing the common combination of numpy, scipy, pandas and matplotlib | |
| # in an Alpine based Docker image. | |
| FROM alpine:3.4 | |
| RUN echo "http://dl-8.alpinelinux.org/alpine/edge/community" >> /etc/apk/repositories | |
| RUN apk --no-cache --update-cache add gcc gfortran python python-dev py-pip build-base wget freetype-dev libpng-dev openblas-dev | |
| RUN ln -s /usr/include/locale.h /usr/include/xlocale.h | |
| RUN pip install numpy scipy pandas matplotlib | |
| package de.tdlabs.keycloak.client; | |
| import com.fasterxml.jackson.databind.ObjectMapper; | |
| import org.keycloak.OAuth2Constants; | |
| import org.keycloak.RSATokenVerifier; | |
| import org.keycloak.admin.client.Keycloak; | |
| import org.keycloak.admin.client.KeycloakBuilder; | |
| import org.keycloak.common.VerificationException; | |
| import org.keycloak.jose.jws.JWSHeader; | |
| import org.keycloak.representations.AccessToken; |
flatMap, especially if the following operation will result in high memory usage. The flatMap op usually results in a DataFrame with a [much] larger number of rows, yet the number of partitions will remain the same. Thus, if a subsequent op causes a large expansion of memory usage (i.e. converting a DataFrame of indices to a DataFrame of large Vectors), the memory usage per partition may become too high. In this case, it is beneficial to repartition the output of flatMap to a number of partitions that will safely allow for appropriate partition memory sizes, based upon the| Region Code | Region Name | Availability Zones |
|---|---|---|
| us-east-1* | N. Virginia | us-east-1a us-east-1b us-east-1c us-east-1d us-east-1e |
| us-east-2 | Ohio | us-east-2a us-east-2b us-east-2c |
| us-west-1* | N. California | us-west-1a us-west-1b us-west-1c |
| us-west-2 | Oregon | us-west-2a us-west-2b us-west-2c |
| eu-west-1 | Ireland | eu-west-1a eu-west-1b eu-west-1c |
| eu-central-1 | Frankfurt | eu-central-1a eu-central-1b |