Created
February 18, 2025 18:47
-
-
Save lukasnxyz/6893199ac13cd2be1de421dc11833ee2 to your computer and use it in GitHub Desktop.
face landmark detection
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # python3.12 needed for mediapipe! | |
| # pip install mediapipe opencv-python numpy | |
| import mediapipe as mp | |
| from mediapipe.tasks import python | |
| from mediapipe.tasks.python import vision | |
| from mediapipe import solutions | |
| from mediapipe.framework.formats import landmark_pb2 | |
| import cv2 | |
| import numpy as np | |
| def draw_landmarks_on_image(rgb_image, detection_result): | |
| face_landmarks_list = detection_result.face_landmarks | |
| annotated_image = np.copy(rgb_image) | |
| # loop through the detected faces to visualize. | |
| for idx in range(len(face_landmarks_list)): | |
| face_landmarks = face_landmarks_list[idx] | |
| # draw the face landmarks. | |
| face_landmarks_proto = landmark_pb2.NormalizedLandmarkList() | |
| face_landmarks_proto.landmark.extend([ | |
| landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in face_landmarks | |
| ]) | |
| solutions.drawing_utils.draw_landmarks( | |
| image=annotated_image, | |
| landmark_list=face_landmarks_proto, | |
| connections=mp.solutions.face_mesh.FACEMESH_TESSELATION, | |
| landmark_drawing_spec=None, | |
| connection_drawing_spec=mp.solutions.drawing_styles | |
| .get_default_face_mesh_tesselation_style()) | |
| solutions.drawing_utils.draw_landmarks( | |
| image=annotated_image, | |
| landmark_list=face_landmarks_proto, | |
| connections=mp.solutions.face_mesh.FACEMESH_CONTOURS, | |
| landmark_drawing_spec=None, | |
| connection_drawing_spec=mp.solutions.drawing_styles | |
| .get_default_face_mesh_contours_style()) | |
| solutions.drawing_utils.draw_landmarks( | |
| image=annotated_image, | |
| landmark_list=face_landmarks_proto, | |
| connections=mp.solutions.face_mesh.FACEMESH_IRISES, | |
| landmark_drawing_spec=None, | |
| connection_drawing_spec=mp.solutions.drawing_styles | |
| .get_default_face_mesh_iris_connections_style()) | |
| return annotated_image | |
| if __name__ == '__main__': | |
| base_options = python.BaseOptions(model_asset_path='face_landmarker_v2_with_blendshapes.task') | |
| options = vision.FaceLandmarkerOptions(base_options=base_options, | |
| output_face_blendshapes=True, | |
| output_facial_transformation_matrixes=True, | |
| num_faces=1) | |
| detector = vision.FaceLandmarker.create_from_options(options) | |
| cap = cv2.VideoCapture(0) | |
| if not cap.isOpened(): | |
| print('error: could not open camera!') | |
| exit() | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: | |
| print('failed to capture image!') | |
| break | |
| frame = cv2.flip(frame, 1) | |
| frame = cv2.resize(frame, (450, 280)) | |
| frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame_rgb) | |
| detection_result = detector.detect(image) | |
| black_background = np.zeros_like(frame) | |
| annotated_image = draw_landmarks_on_image(black_background, detection_result) | |
| cv2.imshow('face', cv2.cvtColor(annotated_image, cv2.COLOR_RGB2BGR)) | |
| if cv2.waitKey(1) & 0xFF == ord('q'): break | |
| cap.release() | |
| cv2.destroyAllWindows() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment