Last active
August 16, 2018 15:59
-
-
Save khodjaevsh/464ecf2e21b1b20fc29068475a330f49 to your computer and use it in GitHub Desktop.
Customer Survey
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def clean_string(column): | |
| return column.apply(lambda x: x.replace("\n",'',2)).apply(lambda x: x.replace(' ','')) | |
| def scrape_reviews(PATH, n_pages, sleep_time = 0.3): | |
| names = [] | |
| ratings = [] | |
| headers = [] | |
| reviews = [] | |
| dates = [] | |
| locations = [] | |
| for p in range(n_pages): | |
| sleep(sleep_time) | |
| http = requests.get(f'{PATH}{p}') | |
| bsoup = BeautifulSoup(http.text, 'html.parser') | |
| review_containers = bsoup.find_all('div', class_ = 'review-info__body') | |
| user_containers = bsoup.find_all('div', class_ = 'consumer-info__details') | |
| rating_container = bsoup.find_all('div',class_ = "review-info__header__verified") | |
| date_container = bsoup.find_all('div',class_ = "header__verified__date") | |
| for x in range(len(data_containers)): | |
| review_c = review_containers[x] | |
| headers.append(review_c.h2.a.text) | |
| reviews.append(review_c.p.text) | |
| reviewer = user_containers[x] | |
| names.append(reviewer.h3.text) | |
| rating = rating_container[x] | |
| ratings.append(rating.div.attrs['class'][1][12]) | |
| date = date_container[x] | |
| dates.append(datetime.datetime.strptime(date.time.attrs['datetime'][0:10], '%Y-%m-%d').date()) | |
| prof = profile_link_containers[x] | |
| link = 'https://www.trustpilot.com'+ prof.a['href'] | |
| c_profile = requests.get(f'{link}') | |
| csoup = BeautifulSoup(c_profile.text, 'html.parser') | |
| cust_container = csoup.find('div', class_ = 'user-summary-location') | |
| locations.append(cust_container.text) | |
| rev_df = pd.DataFrame(list(zip(headers, reviews, ratings, names, locations, dates)), | |
| columns = ['Header','Review','Rating', 'Name', 'Location', 'Date']) | |
| rev_df.Review = clean_string(rev_df.Review) | |
| rev_df.Name = clean_string(rev_df.Name) | |
| rev_df.Location = clean_string(rev_df.Location) | |
| rev_df.Location = rev_df.Location.apply(lambda x: x.split(',',1)[-1]) | |
| rev_df.Rating = rev_df.Rating.astype('int') | |
| rev_df.Date = pd.to_datetime(df.Date) | |
| return rev_df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment