Skip to content

Instantly share code, notes, and snippets.

@justinchuby
Created November 5, 2025 06:03
Show Gist options
  • Select an option

  • Save justinchuby/3328106783e28fbccb3e6bd1673691a8 to your computer and use it in GitHub Desktop.

Select an option

Save justinchuby/3328106783e28fbccb3e6bd1673691a8 to your computer and use it in GitHub Desktop.
import onnx_ir as ir
import onnx_ir.passes.common
import onnxscript
m = ir.load("perch_v2_opt3.onnx")
for node in m.graph:
if node.op_type == "MatMul":
print(node)
if node.inputs[0].producer().op_type == "Reshape":
# Skip the reshape
input = node.inputs[0].producer().inputs[0]
node.replace_input_with(0, input)
for usage in node.outputs[0].uses():
if usage.node.op_type == "Reshape":
reshape_usages = list(usage.node.outputs[0].uses())
# Keep the last Reshape
if reshape_usages[0].node.op_type == "ReduceMax":
shape = ir.val(
"reshape_shape", const_value=ir.tensor([-1, 16, 4, 14795, 4])
)
m.graph.initializers.add(shape)
usage.node.replace_input_with(1, shape)
continue
reshape_node = usage.node
output = reshape_node.outputs[0]
output.replace_all_uses_with(node.outputs[0])
# Remove Expand
if node.op_type == "Expand":
print(node)
input = node.inputs[0]
output = node.outputs[0]
output.replace_all_uses_with(input)
# Clean up any unused nodes
onnx_ir.passes.common.RemoveUnusedNodesPass()(m)
# Clear all intermediate shapes and re-infer shapes
for node in m.graph:
for output in node.outputs:
if output.is_graph_output():
continue
output.shape = None
m.graph.inputs[0].shape = ir.Shape(["batch", *m.graph.inputs[0].shape[1:]])
for output in m.graph.outputs:
output.shape = ir.Shape(["batch", *output.shape[1:]])
onnxscript.optimizer.optimize(
m, input_size_limit=1024 * 1024 * 1024, output_size_limit=1024 * 1024 * 1024
)
onnx_ir.passes.common.ClearMetadataAndDocStringPass()(m)
# Rename outputs and match the tflite model
m.graph.outputs[0].name = "spatial_embedding"
m.graph.outputs[1].name = "embedding"
m.graph.outputs[2].name = "spectrogram"
m.graph.outputs[3].name = "label"
out_0 = m.graph.outputs[0]
out_1 = m.graph.outputs[1]
m.graph.outputs[1] = out_0
m.graph.outputs[0] = out_1
ir.save(m, "perch_v2_opt4.onnx")
@justinchuby
Copy link
Author

"""Cleanup and optimize perch_v2_slim.onnx model.

This script can be applied after completing these steps:

1. Use `tf2onnx` to convert the tflite model to onnx
2. Apply onnxslim and onnxscript.optimize.optimizer on the model
3. Manually edit the model to remove the first DFT node (no-op) and fuse
    the nodes that effectively takes the magnitude of the DFT output with ReduceL2.
"""

import onnx_ir as ir
import onnx_ir.passes.common
import onnxscript
import numpy as np

m = ir.load("perch_v2_slim.onnx")

for node in m.graph:
    if node.op_type == "MatMul":
        print("Simplify MatMul + Reshape:", node.name)
        if node.inputs[0].producer().op_type == "Reshape":
            # Skip the reshape
            input = node.inputs[0].producer().inputs[0]
            node.replace_input_with(0, input)

        for usage in node.outputs[0].uses():
            if usage.node.op_type == "Reshape":
                reshape_usages = list(usage.node.outputs[0].uses())
                # Keep the last Reshape
                if reshape_usages[0].node.op_type == "ReduceMax":
                    shape = ir.val(
                        "reshape_shape", const_value=ir.tensor([-1, 16, 4, 14795, 4])
                    )
                    m.graph.initializers.add(shape)
                    usage.node.replace_input_with(1, shape)
                    continue
                reshape_node = usage.node
                output = reshape_node.outputs[0]
                output.replace_all_uses_with(node.outputs[0])

    # Remove Expand
    if node.op_type == "Expand":
        print("Remove Expand:", node.name)
        input = node.inputs[0]
        output = node.outputs[0]
        output.replace_all_uses_with(input)

# Clean up any unused nodes
onnx_ir.passes.common.RemoveUnusedNodesPass()(m)
# Do some const folding
onnxscript.optimizer.optimize(
    m, input_size_limit=1024 * 1024 * 1024, output_size_limit=1024 * 1024 * 1024
)
one_1d = ir.val("1d_one", const_value=ir.tensor([1], dtype=ir.DataType.INT64))
m.graph.initializers.add(one_1d)

# Simplify Unsqueeze + Reshape
for node in m.graph:
    if node.op_type == "Reshape":
        print("Simplify Unsqueeze + Reshape:", node.name)
        if (
            node.inputs[0].producer()
            and node.inputs[0].producer().op_type == "Unsqueeze"
        ):
            unsqueeze_node = node.inputs[0].producer()
            unsqueeze_node.replace_input_with(1, one_1d)
            node.outputs[0].replace_all_uses_with(unsqueeze_node.outputs[0])
            unsqueeze_node.outputs[0].shape = ir.Shape(["batch", 160000, 1])

first_reshape_shape = ir.val(
    "first_reshape_shape", const_value=ir.tensor([-1, 1, 160000, 1])
)
m.graph.initializers.add(first_reshape_shape)

# Simplify first Reshape + Unsqueeze
for node in m.graph:
    if node.op_type == "Unsqueeze":
        print("Simplify Reshape + Unsqueeze:", node.name)
        if node.inputs[0].producer() and node.inputs[0].producer().op_type == "Reshape":
            reshape_node = node.inputs[0].producer()
            reshape_node.replace_input_with(1, first_reshape_shape)
            node.outputs[0].replace_all_uses_with(reshape_node.outputs[0])
            reshape_node.outputs[0].shape = ir.Shape(["batch", 1, 160000, 1])
            break

# Fuse Conv + Sub into Conv
for node in m.graph:
    if node.op_type == "Conv":
        print("Check Conv for fusion:", node.name)
        conv_node = node
        assert len(conv_node.outputs[0].uses()) == 1
        for usage in conv_node.outputs[0].uses():
            if usage.node.op_type == "Sub":
                sub_node = usage.node
                print("  Fuse Sub into Conv:", sub_node.name)
                sub_value = sub_node.inputs[1]
                new_bias = (np.negative(sub_value.const_value.numpy())).reshape((-1,))
                new_bias_val = ir.val(
                    f"{sub_value.name}_neg",
                    const_value=ir.tensor(new_bias),
                )
                m.graph.initializers.add(new_bias_val)
                if len(conv_node.inputs) == 2:
                    # Bad access of private field
                    conv_node._inputs = conv_node._inputs + (None,)
                conv_node.replace_input_with(2, new_bias_val)
                sub_node.outputs[0].replace_all_uses_with(conv_node.outputs[0])

# Clean up any unused nodes
onnx_ir.passes.common.RemoveUnusedNodesPass()(m)

# Clear all intermediate shapes and re-infer shapes
for node in m.graph:
    for output in node.outputs:
        if output.is_graph_output():
            continue
        output.shape = None

m.graph.inputs[0].shape = ir.Shape(["batch", *m.graph.inputs[0].shape[1:]])
for output in m.graph.outputs:
    output.shape = ir.Shape(["batch", *output.shape[1:]])

onnxscript.optimizer.optimize(
    m, input_size_limit=1024 * 1024 * 1024, output_size_limit=1024 * 1024 * 1024
)

onnx_ir.passes.common.ClearMetadataAndDocStringPass()(m)

# Replace None dim with "batch"
for node in m.graph:
    for output in node.outputs:
        if output.shape is None:
            continue
        shape = ir.Shape(output.shape)
        for i in range(len(shape)):
            dim = shape[i]
            if isinstance(dim, ir.SymbolicDim) and dim.value is None:
                shape[i] = ir.SymbolicDim("batch")
        output.shape = shape

# Rename IO and match the tflite model
m.graph.inputs[0].name = "inputs"
m.graph.outputs[0].name = "spatial_embedding"
m.graph.outputs[1].name = "embedding"
m.graph.outputs[2].name = "spectrogram"
m.graph.outputs[3].name = "label"

out_0 = m.graph.outputs[0]
out_1 = m.graph.outputs[1]
m.graph.outputs[1] = out_0
m.graph.outputs[0] = out_1

m.producer_name = "onnx-ir"
m.producer_version = None
m.ir_version = 10

ir.save(m, "perch_v2.onnx")

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment