Last active
September 26, 2025 07:36
-
-
Save jrosell/1f69ea18762785958e947afe13480914 to your computer and use it in GitHub Desktop.
Methods for computing Risk Ratio and Risk Difference.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| stopifnot(requireNamespace("rlang")) | |
| rlang::check_installed("pak") | |
| pkgs <- rlang::chr( | |
| "tidymodels", | |
| "marginaleffects", | |
| "parameters", | |
| "modelbased", | |
| "dplyr", | |
| "stringr", | |
| "tibble", | |
| "tidyr", | |
| "boot", | |
| "epibasix", | |
| "fixest", | |
| "sandwich", | |
| "emmeans" | |
| ) | |
| pak::pak(pkgs) | |
| libs <- ifelse(names(pkgs) == "", pkgs, names(pkgs)) | |
| libs <- if (length(libs) == 0) pkgs else libs | |
| lapply(libs, library, quiet = TRUE, character.only = TRUE) |> invisible() | |
| convert_dataframe_2x2 <- \(data, treatment_var, treatment_level, outcome_var) { | |
| if (!treatment_var %in% names(data)) { | |
| stop("Treatment variable not found in data") | |
| } | |
| if (!outcome_var %in% names(data)) { | |
| stop("Outcome variable not found in data") | |
| } | |
| if (!treatment_level %in% data[[treatment_var]]) { | |
| stop("Treatment level not found") | |
| } | |
| counts_matrix <- data |> | |
| mutate( | |
| treatment = ifelse( | |
| .data[[treatment_var]] == treatment_level, | |
| "Experimental", | |
| "Control" | |
| ), | |
| outcome = ifelse(.data[[outcome_var]] == 1, "Event", "NoEvent") | |
| ) |> | |
| count(treatment, outcome) |> | |
| pivot_wider( | |
| names_from = outcome, | |
| values_from = n | |
| ) |> | |
| arrange(match(treatment, c("Experimental", "Control"))) |> | |
| column_to_rownames("treatment") |> | |
| as.matrix() | |
| matrix( | |
| as.numeric(counts_matrix), | |
| nrow = nrow(counts_matrix), | |
| dimnames = dimnames(counts_matrix) | |
| ) | |
| } | |
| compute_risks_raw <- function( | |
| data, | |
| treatment_var, | |
| treatment_level, | |
| outcome_var | |
| ) { | |
| counts_matrix <- convert_dataframe_2x2( | |
| data, | |
| treatment_var = treatment_var, | |
| treatment_level = treatment_level, | |
| outcome_var = outcome_var | |
| ) | |
| epi_measures <- epi2x2(counts_matrix) | |
| epi_measures |> | |
| unclass() |> | |
| enframe() |> | |
| filter( | |
| name %in% | |
| rlang::chr( | |
| "OR", | |
| "OR.CIL", | |
| "OR.CIU", | |
| "RR", # Cohort | |
| "RR.CIL", # Cohort | |
| "RR.CIU", # Cohort | |
| "rdCo", # Cohort | |
| "rdCo.CIL", # Cohort | |
| "rdCo.CIU", # Cohort | |
| # "rdCC", # Case-Control | |
| # "rdCC.CIL", # Case-Control | |
| # "rdCC.CIU" # Case-Control | |
| ) | |
| ) |> | |
| unnest(value) |> | |
| pivot_wider() | |
| } | |
| compute_risks_bootstraps <- function( | |
| data, | |
| treatment_var, | |
| outcome_var, | |
| treatment_level, | |
| n_boot = 1000, | |
| conf = 0.95 | |
| ) { | |
| boot_fn <- function(d, i) { | |
| d_boot <- d[i, ] | |
| computed <- | |
| compute_risks_raw( | |
| data = d_boot, | |
| treatment_var = treatment_var, | |
| treatment_level = treatment_level, | |
| outcome_var = outcome_var | |
| ) |> | |
| select(OR, RR, rdCo) | |
| res <- as.double(computed) | |
| names(res) <- names(computed) | |
| res | |
| } | |
| set.seed(123) | |
| boot_res <- boot::boot(data, boot_fn, R = n_boot) | |
| alpha <- (1 - conf) / 2 | |
| RR <- mean(boot_res$t[, 2]) | |
| rdCo <- mean(boot_res$t[, 3]) | |
| RR_CI <- quantile(boot_res$t[, 2], probs = c(alpha, 1 - alpha)) | |
| rdCo_CI <- quantile(boot_res$t[, 3], probs = c(alpha, 1 - alpha)) | |
| tibble( | |
| Method = "bootstraps", | |
| Measure = c("Risk Ratio", "Risk Difference"), | |
| Estimate = c(RR, rdCo), | |
| CI_low = c(RR_CI[1], rdCo_CI[1]), | |
| CI_high = c(RR_CI[2], rdCo_CI[2]) | |
| ) | |
| } | |
| compute_risks_model_marginal <- function( | |
| model, | |
| treatment_var | |
| ) { | |
| # Risk ratio | |
| RR_me <- marginaleffects::avg_comparisons( | |
| model, | |
| variables = treatment_var, | |
| type = "response", | |
| newdata = datagrid(model), | |
| comparison = "ratio" | |
| ) | |
| # Risk Difference | |
| RD_me <- marginaleffects::avg_comparisons( | |
| model, | |
| variables = treatment_var, | |
| type = "response", | |
| newdata = datagrid(model), | |
| comparison = "difference" | |
| ) | |
| tibble( | |
| Method = "marginal", | |
| Measure = c("Risk Ratio", "Risk Difference"), | |
| Estimate = c(RR_me$estimate, RD_me$estimate), | |
| CI_low = c(RR_me$conf.low, RD_me$conf.low), | |
| CI_high = c(RR_me$conf.high, RD_me$conf.high) | |
| ) | |
| } | |
| compute_risks_model <- function( | |
| model, | |
| treatment_var, | |
| method = c("marginal", "adjusted", "mechanistic", "cate"), | |
| newdata = NULL | |
| ) { | |
| method <- match.arg(method) | |
| if (method == "marginal") { | |
| return( | |
| compute_risks_model_marginal(model, treatment_var = treatment_var) | |
| ) | |
| } else if (method == "adjusted") { | |
| newdata <- model$model | |
| } else if (method == "mechanistic") { | |
| if (is.null(newdata)) stop("Must supply newdata for mechanistic mode") | |
| } | |
| if (method == "cate") { | |
| # Risk Ratio | |
| RR_me <- marginaleffects::comparisons( | |
| model, | |
| variables = treatment_var, | |
| type = "response", | |
| newdata = NULL, | |
| comparison = "ratio" | |
| ) | |
| # Risk Difference | |
| RD_me <- marginaleffects::comparisons( | |
| model, | |
| variables = treatment_var, | |
| type = "response", | |
| newdata = NULL, | |
| comparison = "difference" | |
| ) | |
| return(tibble::tibble( | |
| Method = method, | |
| Measure = c("Risk Ratio", "Risk Difference"), | |
| Estimate = c( | |
| mean(RR_me$estimate), | |
| mean(RD_me$estimate) | |
| ), | |
| CI_low = c( | |
| mean(RR_me$conf.low), | |
| mean(RD_me$conf.low) | |
| ), | |
| CI_high = c( | |
| mean(RR_me$conf.high), | |
| mean(RD_me$conf.high) | |
| ) | |
| )) | |
| } | |
| # Risk Ratio | |
| RR_me <- marginaleffects::avg_comparisons( | |
| model, | |
| variables = treatment_var, | |
| type = "response", | |
| newdata = newdata, | |
| comparison = "ratio" | |
| ) | |
| # Risk Difference | |
| RD_me <- marginaleffects::avg_comparisons( | |
| model, | |
| variables = treatment_var, | |
| type = "response", | |
| newdata = newdata, | |
| comparison = "difference" | |
| ) | |
| tibble::tibble( | |
| Method = method, | |
| Measure = c("Risk Ratio", "Risk Difference"), | |
| Estimate = c(RR_me$estimate, RD_me$estimate), | |
| CI_low = c(RR_me$conf.low, RD_me$conf.low), | |
| CI_high = c(RR_me$conf.high, RD_me$conf.high) | |
| ) | |
| } | |
| ## Run | |
| set.seed(123) | |
| n <- 1000 | |
| data <- | |
| tibble( | |
| treatment = sample(c("yes", "no"), n, replace = TRUE), | |
| covariate = rnorm(n), | |
| age = round(rnorm(n, mean = 60, sd = 4)), | |
| hospital = sample(c("A", "B", "C"), n, replace = TRUE), | |
| visits = rpois(n, lambda = 5), | |
| outcome = rbinom( | |
| n, | |
| size = 1, | |
| prob = plogis(-1 + 0.5 * (treatment == "yes") + 1.5 * covariate) # covariate has strong effect | |
| ) | |
| ) |> | |
| glimpse() | |
| treatment_var = "treatment" | |
| outcome_var = "outcome" | |
| treatment_level = "yes" | |
| convert_dataframe_2x2( | |
| data, | |
| treatment_var = treatment_var, | |
| treatment_level = treatment_level, | |
| outcome_var = outcome_var | |
| ) | |
| compute_risks_bootstraps( | |
| data = data, | |
| treatment_var = treatment_var, | |
| treatment_level = treatment_level, | |
| outcome_var = outcome_var, | |
| n_boot = 100 | |
| ) | |
| one_level_mod <- glm( | |
| outcome ~ treatment, | |
| data = data, | |
| family = binomial | |
| ) | |
| compute_risks_model( | |
| model = one_level_mod, | |
| treatment_var = treatment_var, | |
| method = "marginal" | |
| ) | |
| compute_risks_model( | |
| model = one_level_mod, | |
| treatment_var = treatment_var, | |
| method = "adjusted" | |
| ) | |
| compute_risks_model( | |
| model = one_level_mod, | |
| treatment_var = treatment_var, | |
| method = "cate" | |
| ) | |
| covariates_mod <- glm( | |
| outcome ~ treatment + covariate, | |
| data = data, | |
| family = binomial | |
| ) | |
| compute_risks_model( | |
| model = covariates_mod, | |
| treatment_var = treatment_var, | |
| method = "marginal" | |
| ) | |
| compute_risks_model( | |
| model = covariates_mod, | |
| treatment_var = treatment_var, | |
| method = "adjusted" | |
| ) | |
| compute_risks_model( | |
| model = covariates_mod, | |
| treatment_var = treatment_var, | |
| method = "cate" | |
| ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment