This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| for i in range(0,len(local_max)-3): | |
| (m,c),r,_,_,_= np.polyfit(local_max_idx[i:i+3],local_max[i:i+3],1,full=True) | |
| if(m<=3 and m>=-3 and (r[0]<20 and r[0]>-20)): | |
| start=local_max_idx[i+2] | |
| for k in range(start,start+7): | |
| if(k<len(prices_close) and prices_close[k]>(k*m+c)): | |
| plt.figure(figsize=(10,5)) | |
| plt.plot(local_max_idx,m*local_max_idx+c,'m') | |
| plt.plot(prices_close) | |
| plt.plot(k,prices_close[k],'bo') |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| local_min_idx=argrelextrema(prices_low,np.less)[0] | |
| local_max_idx=argrelextrema(prices_high,np.greater)[0] | |
| local_min_idx=np.array(local_min_idx) | |
| local_max_idx=np.array(local_max_idx) | |
| local_min=[] | |
| local_max=[] | |
| for loc in local_min_idx: | |
| local_min.append(prices_low[loc]) | |
| for loc in local_max_idx: |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| data=requests.get('https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&outputsize=full&symbol=FB&apikey=YOURAPIKEY') | |
| data=data.json() | |
| prices_low,prices_high,prices_close=[],[],[] | |
| for i in range(200,1,-1): | |
| d=date.today()-timedelta(i) | |
| d=d.strftime("%Y-%m-%d") | |
| try: | |
| prices_high.append(float(data["Time Series (Daily)"][d]["2. high"])) | |
| prices_low.append(float(data["Time Series (Daily)"][d]["3. low"])) | |
| prices_close.append(float(data["Time Series (Daily)"][d]["4. close"])) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #import the required libraries | |
| import requests | |
| from datetime import timedelta,date | |
| import numpy as np | |
| from scipy.signal import argrelextrema | |
| import matplotlib.pyplot as plt | |
| import time |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| function move(element,direction,duration=1000){ | |
| var elStyle = window.getComputedStyle(element); | |
| var x_coord= elStyle.getPropertyValue('left').replace("px", ""); | |
| var y_coord= elStyle.getPropertyValue('top').replace("px", ""); | |
| var x_frameDistance = direction[0]/ (duration / 10); | |
| var y_frameDistance = direction[1] / (duration / 10); | |
| function moveAFrame() { | |
| elStyle = window.getComputedStyle(element); | |
| x_coord = elStyle.getPropertyValue('left').replace("px",""); | |
| var x_newLocation = Number(x_coord) + x_frameDistance; |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| function move_by_vector(element,direction,duration=1000) { | |
| var elStyle = window.getComputedStyle(element); | |
| var x_isNegated =(direction[0]<0)?true:false; | |
| var y_isNegated =(direction[1]<0)?true:false; | |
| var x_coord= elStyle.getPropertyValue('left').replace("px", ""); | |
| var y_coord= elStyle.getPropertyValue('top').replace("px", ""); | |
| var x_destination = Number(x_coord) + direction[0]; | |
| var y_destination = Number(y_coord) + direction[1]; | |
| var x_frameDistance = direction[0]/ (duration / 10); | |
| var y_frameDistance = direction[1] / (duration / 10); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| for i in range(65,y_train.shape[0]): | |
| a_train.append(X_train[i-65:i-5,0]) | |
| b_train.append(y_train[i-5:i,0]) | |
| for x in range(65,y_test.shape[0]): | |
| c_test.append(X_test[x-65:x-5,0]) | |
| d_test.append(y_test[x-5:x,0]) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pandas as pd | |
| import numpy as np | |
| import pandas_datareader as pdr | |
| from sklearn.preprocessing import MinMaxScaler | |
| import matplotlib.pyplot as plt | |
| TI= TechnicalIndicators() | |
| close_data=TI.close_data[['4. close']] | |
| macd_data=TI.macd_data | |
| rsi_data=TI.rsi_data | |
| bbands_data=TI.bbands_data |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pandas as pd | |
| import numpy as np | |
| import pandas_datareader as pdr | |
| from sklearn.preprocessing import MinMaxScaler | |
| import matplotlib.pyplot as plt | |
| TI= TechnicalIndicators() | |
| close_data=TI.close_data[['4. close']] | |
| macd_data=TI.macd_data | |
| rsi_data=TI.rsi_data | |
| bbands_data=TI.bbands_data |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from keras.models import Sequential | |
| from keras.layers import Dense, Dropout,LSTM | |
| from keras.optimizers import Adam | |
| model = Sequential() | |
| model.add(LSTM(units=100,input_shape=(x_train.shape[1],1),return_sequences=True)) | |
| model.add(LSTM(units=100)) | |
| model.add(Dropout(0.4)) | |
| model.add(Dense(1)) | |
| ADAM = Adam(0.0005, beta_1=0.9, beta_2=0.999, amsgrad=False) | |
| model.compile(loss='mean_squared_error', optimizer=ADAM) |
NewerOlder