Created
June 16, 2020 20:00
-
-
Save jgdshkovi/a1feb35c1ae069d9fc0e26ba75628f5d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from collections import defaultdict | |
| def list_duplicates(seq): | |
| tally = defaultdict(list) | |
| for i,item in enumerate(seq): | |
| tally[item].append(i) | |
| return ((key,locs) for key,locs in tally.items() if len(locs)>1) | |
| def return_mask(wts, labels,thr): | |
| modsource = labels.copy() | |
| for dup in sorted(list_duplicates(labels)): | |
| lis = dup[1][1:] | |
| a = torch.from_numpy(np.reshape(wts[dup[1][0]],(1,wts[dup[1][0]].size))) | |
| for i in lis: | |
| b = torch.from_numpy(np.reshape(wts[i],(1,wts[i].size))) | |
| simi = (cos(a,b)) | |
| dis = distance.euclidean(a,b) | |
| if simi>thr: | |
| modsource[i] = -1 | |
| mask = [] | |
| for el in modsource: | |
| if el!=-1: | |
| mask.append(1) | |
| else: | |
| mask.append(0) | |
| return mask | |
| def calc_distance(x1, y1, a, b, c): | |
| d = abs((a * x1 + b * y1 + c)) / (math.sqrt(a * a + b * b)) | |
| return d | |
| ress = [] | |
| def optk(X, shp): | |
| global ress | |
| ress = [] | |
| maxdis_k = 0 | |
| iterations = 20*shp//100 | |
| if iterations>50: | |
| iterations=50 | |
| count = 1 | |
| dist_points_from_cluster_center = [0] | |
| distance_of_points_from_line = [0] | |
| spt = skm.spherical_k_means(X,n_clusters=1,random_state=10) | |
| ept = skm.spherical_k_means(X,n_clusters=shp,random_state=10) | |
| a = spt[2] - ept[2] | |
| b = shp - 1 | |
| c1 = 1 * ept[2] | |
| c2 = shp * spt[2] | |
| c = c1 - c2 | |
| ress.append(spt[1]) | |
| dist_points_from_cluster_center.append(spt[2]) | |
| distance_of_points_from_line.append( | |
| calc_distance(1, dist_points_from_cluster_center[1], a, b, c)) | |
| for k in range(2,shp): | |
| if count<iterations: | |
| res = skm.spherical_k_means(X,n_clusters=k,random_state=10) | |
| ress.append(res[1]) | |
| dist_points_from_cluster_center.append(res[2]) | |
| dis = calc_distance(k, dist_points_from_cluster_center[k], a, b, c) | |
| distance_of_points_from_line.append(dis) | |
| if dis > distance_of_points_from_line[maxdis_k]: | |
| maxdis_k = k | |
| count = 0 | |
| else: | |
| count += 1 | |
| else: | |
| break | |
| ress.append(ept[1]) | |
| dist_points_from_cluster_center.append(ept[2]) | |
| distance_of_points_from_line.append( | |
| calc_distance(shp, dist_points_from_cluster_center[-1], a, b, c)) | |
| return maxdis_k | |
| def return_cluster_labels(feat_wts, shp): | |
| k = optk(feat_wts, shp) | |
| print(k) | |
| return ress[k] | |
| cos_cfg = [] | |
| cfg_mask = [] | |
| layer_id = 0 | |
| for m in model.modules(): | |
| if isinstance(m , nn.Conv2d): | |
| shape = m.weight.data.shape | |
| print(shape) | |
| reshaped_tensor = m.weight.data.clone().numpy().reshape(shape[0] , shape[1]*shape[2]*shape[3]) | |
| labels = return_cluster_labels(reshaped_tensor,shape[0]) | |
| mask = return_mask(reshaped_tensor,labels, thr= 0.20) | |
| print(sum(mask)) | |
| cos_cfg.append(sum(mask)) | |
| cfg_mask.append(torch.tensor(mask)) | |
| layer_id += 1 | |
| elif isinstance(m, nn.MaxPool2d): | |
| layer_id += 1 | |
| cos_cfg.append('M') | |
| print(cos_cfg) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment