Skip to content

Instantly share code, notes, and snippets.

@inkydragon
Last active December 14, 2025 16:04
Show Gist options
  • Select an option

  • Save inkydragon/4f45468ef1a6e8498ff6ff9175175638 to your computer and use it in GitHub Desktop.

Select an option

Save inkydragon/4f45468ef1a6e8498ff6ff9175175638 to your computer and use it in GitHub Desktop.
Special Functions implementation survey (2025-12-14)
Class SubClass Function Name NO SpecialFunctions.jl Mathematica scipy Desc DLMF MathWorld
Gamma Functions Factorial Function n! 1 factorial(n::Integer) n! factorial(n) factorial of non-negative integer n
Gamma Functions Factorial Function n!! 2 n!! factorial2(n) Double factorial
Gamma Functions Factorial Function FactorialK(n, k) 3 factorialk(n, k) Multifactorial of n of order k
Gamma Functions Factorial Function Binomial(n, m) 4 binomial(n::Integer, k::Integer) Binomial[n, m] binom(x, y) binomial coefficient
Gamma Functions Factorial Function n$ 5 BarnesG[z] Superfactorial, equivalent to the integral values of the Barnes G-function https://mathworld.wolfram.com/Superfactorial.html
Gamma Functions Factorial Function H(n) 6 Hyperfactorial[n] Hyperfactorial https://mathworld.wolfram.com/Hyperfactorial.html
Gamma Functions Factorial Function Multinomial(n1, n2, …) 7 Multinomial[n1, n2, ...] multinomial coefficient
Gamma Functions Gamma Function Γ(z) 8 gamma(z) Gamma[z] gamma(z) gamma function https://mathworld.wolfram.com/GammaFunction.html
Gamma Functions Gamma Function 1/Γ(z) 9 rgamma(z) Reciprocal of the gamma function
Gamma Functions Gamma Function ln Γ(z) 10 loggamma(z) LogGamma[z] loggamma(z) log gamma function
Gamma Functions Gamma Function ln |Γ(z)| 11 logabsgamma(x) gammaln(x) log abs gamma function
Gamma Functions Gamma Function ψ(z) 12 digamma(x) PolyGamma[z] psi(z); digamma(z) psi function, digamma function https://mathworld.wolfram.com/DigammaFunction.html
Gamma Functions Gamma Function ψ'(z) 13 trigamma(x) trigamma function
Gamma Functions Gamma Function ψ⁽ⁿ⁾(z) 14 polygamma(m, x) PolyGamma[n, z] polygamma(n, x) polygamma functions
Gamma Functions Gamma Function Γd(a) 15 multigammaln(a, d) log of multivariate gamma, generalized gamma
Gamma Functions Gamma Function G(n) 16 BarnesG[z] Barnes G-function https://mathworld.wolfram.com/BarnesG-Function.html
Gamma Functions Gamma Function ln G(n) 17 LogBarnesG[z] logarithm of the Barnes G-function
Gamma Functions Gamma Function K(n) 18 K-Function, https://mathworld.wolfram.com/K-Function.html
Gamma Functions Incomplete Gamma Function γ(a, z) 19 Gamma[a, 0, z] (lower, [0, z]) incomplete gamma function https://dlmf.nist.gov/8.2.1 https://mathworld.wolfram.com/IncompleteGammaFunction.html
Gamma Functions Incomplete Gamma Function Γ(a, z) 20 gamma_inc(a, x, IND=0) Gamma[a, z] (upper, [z, Inf]) incomplete gamma function https://dlmf.nist.gov/8.2.2 https://mathworld.wolfram.com/IncompleteGammaFunction.html
Gamma Functions Incomplete Gamma Function γ*(a, z) 21 Tricomi’s incomplete gamma function https://dlmf.nist.gov/8.2.6
Gamma Functions Incomplete Gamma Function P(a, z) 22 GammaRegularized[a, 0, z] gammainc(a, x) γ(a, z)/Γ(z), Normalized lower incomplete gamma function https://dlmf.nist.gov/8.2.4 https://mathworld.wolfram.com/RegularizedGammaFunction.html
Gamma Functions Incomplete Gamma Function Q(a, z) 23 GammaRegularized[a, z] gammaincc(a, x) Γ(a, z)/Γ(z), Normalized upper incomplete gamma function https://dlmf.nist.gov/8.2.4 https://mathworld.wolfram.com/RegularizedGammaFunction.html
Gamma Functions Incomplete Gamma Function P(a, y)_inv 24 gammaincinv(a, y) Inverse to the regularized lower incomplete gamma function
Gamma Functions Incomplete Gamma Function Q(a, y)_inv 25 gammainccinv(a, y) Inverse of the regularized upper incomplete gamma function
Gamma Functions Pochhammer Function poch(z, n) 26 Pochhammer[a, n] poch(z, m) Pochhammer’s symbol (or shifted factorial)
Gamma Functions Pochhammer Function poch1(z, n) 27 ≡ (poch(z, n) - 1)/z
Gamma Functions Beta Function B(a, b) 28 beta(x, y) Beta[a,b] beta(a, b) Beta function
Gamma Functions Beta Function Bₓ(a, b) 29 Beta[z,a,b] betainc(a, b, x) incomplete beta function
Gamma Functions Beta Function Iₓ(a, b) 30 beta_inc(a, b, x) betaincc(a, b, x) regularized incomplete beta function
Gamma Functions Beta Function 1-Iₓ(a, b) 31 betaincc(a, b, x) Complement of the regularized incomplete beta function
Gamma Functions Beta Function ln B(a, b) 32 logbeta(x, y) log beta function
Gamma Functions Beta Function ln |B(a, b)| 33 logabsbeta(x, y) betaln(a, b) log abs beta function
Gamma Functions Beta Function beta_inc_inv(a, b, y) 34 beta_inc_inv(a,b, p,q) Inverse of the regularized incomplete beta function
Exponential and Trigonometric Integrals Exponential Integral E₁(z) 35 expint(z::Complex) ExpIntegralE[1, z] exp1(z) (principal value of) exponential integral
Exponential and Trigonometric Integrals Exponential Integral Eν(z) 36 expint(ν::Complex, z::Complex) ExpIntegralE[n,z] expn(n, x) generalized exponential integral
Exponential and Trigonometric Integrals Exponential Integral eᶻEν(z) 37 expintx(ν::Complex, z::Complex) scaled (generalized) exponential integral
Exponential and Trigonometric Integrals Exponential Integral Ei(x) 38 expinti(x::Real) ExpIntegralEi[z] expi(x) exponential integral
Exponential and Trigonometric Integrals Exponential Integral Li(x), {x>1} 39 logint(x::Real) LogIntegral[z] logarithmic integral
Exponential and Trigonometric Integrals Trigonometric Integral Si(z) 40 sinint(z) SinIntegral[z] sici(x) sine integral function
Exponential and Trigonometric Integrals Trigonometric Integral Ci(z) 41 cosint(z) CosIntegral[z] sici(x) cosine integral function
Exponential and Trigonometric Integrals Trigonometric Integral Shi(z) 42 sinhint(z) SinhIntegral[z] shichi(x) hyperbolic sine integral function
Exponential and Trigonometric Integrals Trigonometric Integral Chi(z) 43 coshint(z) CoshIntegral[z] shichi(x) hyperbolic cosine integral function
Error Functions Error Function erf(z) 44 erf(x) Erf[z] error function
Error Functions Error Function erf(z0, z1) 45 erf(x,y) Erf[z0,z1] generalized error function `erf(z1) - erf(z0)`
Error Functions Error Function erfc(z) 46 erfc(x) Erfc[z] complementary error function
Error Functions Error Function erfcx(z) 47 erfcx(x) Scaled complementary error function
Error Functions Error Function ω(z) 48 faddeeva(x) Faddeeva function
Error Functions Error Function erfi(z) 49 erfi(x) Erfi[z] Imaginary error function
Error Functions Error Function erf_inv(z) 50 erfinv(x) InverseErf[s] inverse error function
Error Functions Error Function erfc_inv(z) 51 erfcinv(x) InverseErfc[s] inverse complementary error function
Error Functions Dawson Integral dawson(z) 52 dawson(x) Dawson integral
Error Functions Fresnel Integral C(z) 53 FewSpecialFunctions.FresnelC(x) FresnelC[z] Fresnel integral C(z)
Error Functions Fresnel Integral S(z) 54 FewSpecialFunctions.FresnelS(x) FresnelS[z] Fresnel integral S(z)
Error Functions Fresnel Integral f(z) 55 FresnelF[z] Fresnel auxiliary function f(z)
Error Functions Fresnel Integral g(z) 56 FresnelG[z] Fresnel auxiliary function g(z)
Error Functions Fresnel Integral ℱ(z) 57 Fresnel Integrals ℱ(z)
Error Functions Fresnel Integral G(z) 58 Goodwin–Staton Integral
Error Functions Fresnel Integral U(x, t) 59 Voigt Functions U
Error Functions Fresnel Integral V(x, t) 60 Voigt Functions V
Airy Functions Airy Function Ai(z) 61 airyai(z) AiryAi[z] airy(z) Airy Ai function
Airy Functions Airy Function Aix(z) 62 airyaix(z) airye(z) scaled Airy Ai function
Airy Functions Airy Function Bi(z) 63 airybi(z) AiryBi[z] airy(z) Airy Bi function
Airy Functions Airy Function Bix(z) 64 airybix(z) airye(z) scaled Airy Bi function
Airy Functions Airy Function Ai'(z) 65 airyaiprime(z) AiryAiPrime[z] airy(z) derivative of Airy Ai function
Airy Functions Airy Function Aix'(z) 66 airyaiprimex(z) airye(z) scaled derivative of Airy Ai function
Airy Functions Airy Function Bi'(z) 67 airybiprime(z) AiryBiPrime[z] airy(z) derivative of Airy Bi function
Airy Functions Airy Function Bix'(z) 68 airybiprimex(z) airye(z) scaled derivative of Airy Bi function
Airy Functions Zeros of Airy Function AiZeros(nt) 69 AiryAiZero[k] ai_zeros(nt) Compute nt zeros and values of the Airy function Ai and its derivative
Airy Functions Zeros of Airy Function BiZeros(nt) 70 AiryBiZero[k] bi_zeros(nt) Compute nt zeros and values of the Airy function Bi and its derivative
Airy Functions Integral of Airy Function Ai_int(z) 71 itairy(x) Integral of Airy Ai function
Airy Functions Integral of Airy Function Bi_int(z) 72 itairy(x) Integral of Airy Bi function
Airy Functions Scorer Function Gi(z) 73 ScorerGi[z] Scorer function Gi(z)
Airy Functions Scorer Function Gi'(z) 74 ScorerGiPrime[z] derivative of the Scorer function Gi(z)
Airy Functions Scorer Function Hi(z) 75 ScorerHi[z] Scorer function Hi(z)
Airy Functions Scorer Function Hi'(z) 76 ScorerHiPrime[z] derivative of the Scorer function Hi(z)
Bessel Functions Bessel Function Jν(x) 77 besselj(nu,z) BesselJ[n,z] jv(v, z[, out])
Bessel Functions Bessel Function J0(x) 78 besselj0(z)
Bessel Functions Bessel Function J1(x) 79 besselj1(z)
Bessel Functions Bessel Function Jν(x)*exp(?) 80 besseljx(nu,z) jve(v, z[, out])
Bessel Functions Bessel Function Yν(x) 81 bessely(nu,z) BesselY[n,z] yv(v, z[, out])
Bessel Functions Bessel Function Y0(x) 82 bessely0(z)
Bessel Functions Bessel Function Y1(x) 83 bessely1(z)
Bessel Functions Bessel Function Yν(x)*exp(?) 84 besselyx(nu,z) yve(v, z[, out])
Bessel Functions Modified Bessel Function Iν​(x) 85 besseli(nu,z) BesselI[n,z] iv(v, z[, out])
Bessel Functions Modified Bessel Function I0(x) 86 besseli0(z)
Bessel Functions Modified Bessel Function I1​(x) 87 besseli1(z)
Bessel Functions Modified Bessel Function Iν​(x)*exp(-x) 88 besselix(nu,z) ive(v, z[, out])
Bessel Functions Modified Bessel Function Kν​(x) 89 besselk(nu,z) BesselK[n,z] kv(v, z[, out])
Bessel Functions Modified Bessel Function K0​(x) 90 besselk0(z)
Bessel Functions Modified Bessel Function K1(x) 91 besselk1(z)
Bessel Functions Modified Bessel Function Kν​(x)*exp(x) 92 besselkx(nu,z) kve(v, z[, out])
Bessel Functions Hankel Function Hkν​(z) 93 besselh(nu,k,z) Bessel function of third kind (Hankel function)
Bessel Functions Hankel Function H1v(z) 94 hankelh1(nu,z) HankelH1[n,z] hankel1(v, z[, out]) Hankel function of the first kind
Bessel Functions Hankel Function H1vx(z) 95 hankelh1x(nu,z) hankel1e(v, z[, out]) Exponentially scaled Hankel function of the first kind
Bessel Functions Hankel Function H2v(z) 96 hankelh2(nu,z) HankelH2[n,z] hankel2(v, z[, out]) Hankel function of the second kind
Bessel Functions Hankel Function H2vx(z) 97 hankelh2x(nu,z) hankel2e(v, z[, out]) Exponentially scaled Hankel function of the second kind
Bessel Functions Hankel Function H1v‘(z) 98 derivatives of Hankel function of the first kind
Bessel Functions Hankel Function H2v’(z) 99 derivatives of Hankel function of the second kind
Bessel Functions Spherical Bessel Function jν(x) 100 sphericalbesselj(ν, x) spherical_jn(n, z[, derivative])
Bessel Functions Spherical Bessel Function yν(x) 101 sphericalbessely(ν, x) spherical_yn(n, z[, derivative])
Bessel Functions Spherical Bessel Function iν(x) 102 Bessels.sphericalbesseli(ν, x) spherical_in(n, z[, derivative])
Bessel Functions Spherical Bessel Function kν(x) 103 Bessels.sphericalbesselk(ν, x) spherical_kn(n, z[, derivative])
Bessel Functions Kelvin Function kelvin(x) 104 kelvin(x[, out]) Kelvin functions as complex numbers
Bessel Functions Kelvin Function kelvin_zeros(nt) 105 kelvin_zeros(nt) Zero of Kelvin Function
Bessel Functions Kelvin Function ber(x) 106 KelvinBer[n,z] ber(x) Kelvin Function of the First Kind bei
Bessel Functions Kelvin Function bei(x) 107 KelvinBei[n,z] bei(x) Kelvin Function of the First Kind ber
Bessel Functions Kelvin Function ker(x) 108 KelvinKer[n,z] ker(x) Kelvin Function of the Second Kind ker
Bessel Functions Kelvin Function kei(x) 109 KelvinKei[n,z] kei(x) Kelvin Function of the Second Kind kei
Bessel Functions Kelvin Function ber'(x) 110 berp(x) Derivative of the Kelvin Function of the First Kind ber
Bessel Functions Kelvin Function bei'(x) 111 beip(x) Derivative of the Kelvin Function of the First Kind bei
Bessel Functions Kelvin Function ker'(x) 112 kerp(x) Derivative of the Kelvin Function of the Second Kind ker
Bessel Functions Kelvin Function kei'(x) 113 keip(x) Derivative of the Kelvin Function of the Second Kind kei
Struve Functions Struve Function Hν(z) 114 Struve.jl StruveH[n,z] Struve function https://dlmf.nist.gov/11.2.1
Struve Functions Struve Function Lν(z) 115 StruveL[n,z] Modified Struve function https://dlmf.nist.gov/11.2.2
Struve Functions Struve Function ∫Hν(z) 116 Integrals of Struve function
Struve Functions Struve Function ∫Lν(z) 117 Integrals of Modified Struve function
Struve Functions Lommel Function sμν(z) 118 LommelS1[m,n,z] Lommel function `s` https://dlmf.nist.gov/11.9.3
Struve Functions Lommel Function Sμν(z) 119 LommelS2[m,n,z] Lommel function `S` https://dlmf.nist.gov/11.9.5
Struve Functions Lommel Function tₘₙ(z) 120 LommelT1[m,n,z] Modified Lommel Function `t`
Struve Functions Lommel Function Tₘₙ(z) 121 LommelT2.[m,n,z] Modified Lommel Function `T`
Struve Functions Anger and Weber Function Jν(z) 122 AngerJ[ν,z] Anger Function https://dlmf.nist.gov/11.10.1
Struve Functions Anger and Weber Function Eν(z) 123 WeberE[ν,z] Weber Function https://dlmf.nist.gov/11.10.2
Struve Functions Anger and Weber Function Aν(z) 124 AngerWeberA[ν,z] associated Anger-Weber function https://dlmf.nist.gov/11.10.4
Struve Functions Anger and Weber Function ∫Jν(z) 125 Integrals of Anger Function
Struve Functions Anger and Weber Function ∫Eν(z) 126 Integrals of Weber Function
Parabolic Cylinder Functions Parabolic Cylinder Function Dν(z) 127 ParabolicCylinderD[ν,z] pbdv(v, x) Parabolic cylinder function, in Whittaker’s notation Dn
Parabolic Cylinder Functions Parabolic Cylinder Function V(a, z) 128 FewSpecialFunctions.V(a, x) ParabolicCylinderV[a,z] pbvv(v, x) Parabolic cylinder function V
Parabolic Cylinder Functions Parabolic Cylinder Function U(a, z) 129 FewSpecialFunctions.U(a, x) ParabolicCylinderU[a,z] Parabolic cylinder function U
Parabolic Cylinder Functions Parabolic Cylinder Function W(a, z) 130 pbwa(a, x) Parabolic cylinder function W https://dlmf.nist.gov/12.14
Parabolic Cylinder Functions Parabolic Cylinder Function Dv'(x) 131 pbdv(v, x)
Parabolic Cylinder Functions Parabolic Cylinder Function Vv'(z) 132 pbvv(v, x)
Hypergeometric Functions Hypergeometric Function ₂F₁(a,b,c,x) 133 HypergeometricFunctions._₂F₁ Hypergeometric2F1[a,b,c,z] hyp2f1(a, b, c, z) Gauss hypergeometric function 2F1 https://dlmf.nist.gov/15.2.2
Hypergeometric Functions Confluent Hypergeometric Function ₀F₁(a,z) 134 Hypergeometric0F1[a,z] hyp0f1(v, z[, out]) hypergeometric function 0F1
Hypergeometric Functions Kummer Functions ₁F₁(a,b,z) 135 HypergeometricFunctions._₁F₁ Hypergeometric1F1[a,b,z] hyp1f1(a, b, x[, out]) Kummer confluent hypergeometric function 1F1 https://dlmf.nist.gov/13.2.2
Hypergeometric Functions Kummer Functions U(a,b,x) 136 HypergeometricFunctions.U(a, b, z) HypergeometricU[a,b,z] hyperu(a, b, x[, out]) confluent hypergeometric function U https://dlmf.nist.gov/13.2.6
Hypergeometric Functions Kummer Functions M(a,b,x) 137 HypergeometricFunctions.M(a, b, z) Olver’s confluent hypergeometric function https://dlmf.nist.gov/13.2.3
Hypergeometric Functions Whittaker Functions Mκμ(z) 138 WhittakerM[k,m,z] Whittaker confluent hypergeometric function M https://dlmf.nist.gov/13.14.2
Hypergeometric Functions Whittaker Functions Wκμ(z) 139 WhittakerW[k,m,z] Whittaker confluent hypergeometric function W https://dlmf.nist.gov/13.14.3
Hypergeometric Functions Generalized Hypergeometric Function pFq(A, B, z) 140 HypergeometricFunctions.pFq(α, β, z) HypergeometricPFQ[{a1,…,ap},{b1,…,bq},z] Generalized Hypergeometric Function
Hypergeometric Functions Generalized Hypergeometric Function Gmnpq(A, B, z) 141 MeijerG[{{a1,…,an},{an+1,…,ap}},{{b1,…,bm},{bm+1,…,bq}},z] Meijer G-Function
Legendre Functions Legendre Function Pn(z) 142 LegendrePolynomials.Pl(x, l) LegendreP[n,x] Legendre functions of the first kind
Legendre Functions Legendre Function Qn(z) 143 LegendreQ[n,z] Legendre functions of the second kind
Legendre Functions Associated Legendre Function Pmn(z) 144 LegendrePolynomials.Plm(x, l, m) LegendreP[n,m,x] associated Legendre functions of the first kind
Legendre Functions Associated Legendre Function Qmn(z) 145 LegendreQ[n,m,z] associated Legendre functions of the second kind
Legendre Functions Spherical and Spheroidal Harmonics Yml(θ, ϕ) 146 spherical harmonic
q Functions 147
Orthogonal Polynomials 148
Elliptic Integrals Legendre Integral F(Φ, m) 149 JacobiElliptic.F(φ, m) EllipticF[ϕ,m] ellipkinc(phi, m) (Legendre’s) incomplete elliptic integral of the first kind
Elliptic Integrals Legendre Integral E(Φ, m) 150 JacobiElliptic.E(φ, m) EllipticE[ϕ,m] ellipeinc(phi, m) (Legendre’s) incomplete elliptic integral of the second kind
Elliptic Integrals Legendre Integral D(Φ, m) 151 incomplete elliptic integral of Legendre’s type
Elliptic Integrals Legendre Integral Π(Φ, u, m) 152 JacobiElliptic.Pi(n, φ, m) EllipticPi[n,ϕ,m] (Legendre’s) incomplete elliptic integral of the third kind
Elliptic Integrals Legendre Integral K(m) 153 ellipk(m) EllipticK[m] ellipk(m) complete elliptic integral of the first kind
Elliptic Integrals Legendre Integral E(m) 154 ellipe(m) EllipticE[m] ellipe(m) complete elliptic integral of the second kind
Elliptic Integrals Legendre Integral Π(u, m) 155 JacobiElliptic.Pi(n, m) EllipticPi[n,m] ≡ Π(π/2, u, m), complete elliptic integral of the third kind
Elliptic Integrals Symmetric Integral RF(x, y, z) 156 EllipticFunctions.CarlsonRF(x, y, z) CarlsonRF[x, y, z] elliprf(x, y, z) symmetric elliptic integral of first kind
Elliptic Integrals Symmetric Integral RG(x, y, z) 157 EllipticFunctions.CarlsonRG(x, y, z) CarlsonRG[x, y, z] elliprg(x, y, z) symmetric elliptic integral of second kind
Elliptic Integrals Symmetric Integral RJ(x, y, z, p) 158 EllipticFunctions.CarlsonRJ(x, y, z) CarlsonRJ[x, y, z, rho] elliprj(x, y, z, p) symmetric elliptic integral of third kind
Elliptic Integrals Symmetric Integral RD(x, y, z) 159 EllipticFunctions.CarlsonRD(x, y, z) CarlsonRD[x, y, z] elliprd(x, y, z) ≡ RJ(x, y, z, z), elliptic integral symmetric in only two variables
Elliptic Integrals Symmetric Integral RC(x, y) 160 EllipticFunctions.CarlsonRC(x, y, z) CarlsonRC[x, y] elliprc(x, y) Carlson’s combination of inverse circular and inverse hyperbolic functions
Elliptic Functions Theta Functions θ(n, z, q) 161 EllipticFunctions.ljtheta[1-4] EllipticTheta[a,u,q] (Jacobi) Theta functions
Elliptic Functions Jacobi Elliptic Function sn(z, k) 162 JacobiElliptic.sn(u, m); EllipticFunctions.jellip JacobiSN[u, m] Jacobi Elliptic Function sn
Elliptic Functions Jacobi Elliptic Function cn(z, k) 163 JacobiElliptic.cn(u, m) JacobiCN[u, m] Jacobi Elliptic Function cn
Elliptic Functions Jacobi Elliptic Function dn(z, k) 164 JacobiElliptic.dn(u, m) JacobiDN[u, m] Jacobi Elliptic Function dn
Elliptic Functions Weierstrass Elliptic Function WeierstrassP(z) 165 EllipticFunctions.wp(z; tau, omega) WeierstrassP[u, {g2,g3}] Weierstrass ℘ function
Elliptic Functions Weierstrass Elliptic Function WeierstrassZeta(z) 166 EllipticFunctions.wzeta(z; tau, omega) WeierstrassZeta[u, {g2,g3}] Weierstrass zeta function
Elliptic Functions Weierstrass Elliptic Function WeierstrassSigma(x) 167 EllipticFunctions.wsigma(z; tau, omega) WeierstrassSigma[u, {g2,g3}] Weierstrass sigma function
Zeta Functions Zeta Function ζ(s) 168 zeta(x) Zeta[s] zeta(x) Riemann zeta function https://dlmf.nist.gov/25.2.1
Zeta Functions Zeta Function ζ(s)-1 169 zetac(x)
Zeta Functions Zeta Function ζ(s, a) 170 Zeta[s,a] zeta(x[, q]) generalized Riemann zeta function, Hurwitz zeta function https://dlmf.nist.gov/25.11.1
Zeta Functions Dilogarithm Li₂(z) 171 PolyLog.li2(z) Spence’s function, dilogarithm https://dlmf.nist.gov/25.12.1
Zeta Functions Dilogarithm Liₛ(z) 172 PolyLog.li(n, z); Polylogarithms.polylog(s, z) PolyLog[n,z] polylogarithm https://dlmf.nist.gov/25.12.10
Zeta Functions Lerchs Transcendent Φ(z, s, a) 173 LerchPhi[z,s,a] Lerch transcendent https://dlmf.nist.gov/25.14.1
Zeta Functions Dirichlet L-function L(s, χ) 174 DirichletL[k,j,s] Dirichlet L-function https://dlmf.nist.gov/25.15.1
Zeta Functions Dirichlet L-function η(s) 175 eta(x) Dirichlet eta function https://mathworld.wolfram.com/DirichletEtaFunction.html
Number Theory Functions 176
Mathieu Functions Mathieu Functions cem(a, q, z) 177 MathieuFunctions.ce(m, q, x) MathieuC[a,q,z] mathieu_cem(m, q, x) even, periodic Mathieu functions
Mathieu Functions Mathieu Functions sem(a, q, z) 178 MathieuFunctions.se(m, q, x) MathieuS[b,q,z] mathieu_sem(m, q, x) odd, periodic Mathieu functions
Mathieu Functions Mathieu Functions cem‘(a, q, z) 179 MathieuCPrime[a,q,z] mathieu_cem(m, q, x) z derivatives of even Mathieu functions
Mathieu Functions Mathieu Functions sem’(b, q, z) 180 MathieuSPrime[b,q,z] mathieu_sem(m, q, x) z derivatives of odd Mathieu functions
Mathieu Functions Characteristic Value of Mathieu function mathieu_a(n, q) 181 MathieuFunctions.charA(q; k) MathieuCharacteristicA[r,q] mathieu_a(m, q) eigenvalues of even Mathieu functions
Mathieu Functions Characteristic Value of Mathieu function mathieu_b(n, q) 182 MathieuFunctions.charB(q, k) MathieuCharacteristicB[r,q] mathieu_b(m, q) eigenvalues of odd Mathieu functions
Mathieu Functions Characteristic Value of Mathieu function mathieu_exp(a, q) 183 MathieuCharacteristicExponent[a,q] characteristic exponent r for Mathieu functions
Spheroidal Wave Functions Spheroidal Wave Function S1mn(z, γ) 184 SpheroidalS1[n,m,γ,z] Radial Spheroidal Wave Function S1
Spheroidal Wave Functions Spheroidal Wave Function S2mn(z, γ) 185 SpheroidalS2[n,m,γ,z] Radial Spheroidal Wave Function S2
Spheroidal Wave Functions Spheroidal Wave Function S1'mn(z, γ) 186 SpheroidalS1Prime[n,m,γ,z] z derivatives of Radial Spheroidal Wave Function S1
Spheroidal Wave Functions Spheroidal Wave Function S2'mn(z, γ) 187 SpheroidalS2Prime[n,m,γ,z] z derivatives of Radial Spheroidal Wave Function S2
Spheroidal Wave Functions Spheroidal Wave Function PSmn(z, γ) 188 SpheroidalPS[n,m,γ,z] Angular Spheroidal Wave Function PS
Spheroidal Wave Functions Spheroidal Wave Function QSmn(z, γ) 189 SpheroidalQS[n,m,γ,z] Angular Spheroidal Wave Function QS
Spheroidal Wave Functions Spheroidal Wave Function PS'mn(z, γ) 190 SpheroidalPSPrime[n,m,γ,z] z derivatives of Angular Spheroidal Wave Function PS
Spheroidal Wave Functions Spheroidal Wave Function QS'mn(z, γ) 191 SpheroidalQSPrime[n,m,γ,z] z derivatives of Angular Spheroidal Wave Function QS
Spheroidal Wave Functions Spheroidal Eigenvalue λmn(γ) 192 SpheroidalEigenvalue[n,m,γ] Spheroidal Eigenvalue of degree `n` and order `m`
Heun Functions Heun Functions HeunG 193 HeunG[a,q,α,β,γ,δ,z]
Heun Functions Heun Functions HeunC 194 HeunC[q,α,γ,δ,ϵ,z]
Heun Functions Heun Functions HeunD 195 HeunD[q,α,γ,δ,ϵ,z]
Heun Functions Heun Functions HeunB 196 HeunB[q,α,γ,δ,ϵ,z]
Heun Functions Heun Functions HeunT 197 HeunT[q,α,γ,δ,ϵ,z]
Heun Functions Lamé Functions LameC 198 LameC[ν,j,z,m]
Heun Functions Lamé Functions LameS 199 LameS[ν,j,z,m]
Heun Functions Lamé Functions LameEigenvalueA 200 LameEigenvalueA[ν,j,m]
Heun Functions Lamé Functions LameEigenvalueB 201 LameEigenvalueB[ν,j,m]
Coulomb Functions F_L(η,ρ) 202 CoulombF[l,η,r] regular Coulomb wavefunction
Coulomb Functions G_L(η,ρ) 203 CoulombG[l,η,r] irregular Coulomb wave function
Coulomb Functions H⁺L(η,ρ) 204 CoulombH1[l,η,r] outgoing irregular Coulomb wavefunction
Coulomb Functions H⁻L(η,ρ) 205 CoulombH2[l,η,r] incoming irregular Coulomb wavefunction
Coulomb Functions σL(η) 206 Coulomb phase shift https://dlmf.nist.gov/33.2.10
Miscellaneous Functions 207
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment