Created
October 2, 2017 07:22
-
-
Save hustzxd/5c125ebebca097e6dac4803ee63fa639 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| input: "data" | |
| input_dim: 1 | |
| input_dim: 4 | |
| input_dim: 368 | |
| input_dim: 368 | |
| layer { | |
| name: "image" | |
| type: "Slice" | |
| bottom: "data" | |
| top: "image" | |
| top: "center_map" | |
| slice_param { | |
| slice_point: 3 | |
| axis: 1 | |
| } | |
| } | |
| layer { | |
| name: "pool_center_lower" | |
| type: "Pooling" | |
| bottom: "center_map" | |
| top: "pool_center_lower" | |
| pooling_param { | |
| pool: AVE | |
| kernel_size: 9 | |
| stride: 8 | |
| } | |
| } | |
| layer { | |
| name: "conv1_stage1" | |
| type: "Convolution" | |
| bottom: "image" | |
| top: "conv1_stage1" | |
| param { | |
| lr_mult: 5 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 10 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 4 | |
| kernel_size: 9 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu1_stage1" | |
| type: "ReLU" | |
| bottom: "conv1_stage1" | |
| top: "conv1_stage1" | |
| } | |
| layer { | |
| name: "pool1_stage1" | |
| type: "Pooling" | |
| bottom: "conv1_stage1" | |
| top: "pool1_stage1" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 3 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv2_stage1" | |
| type: "Convolution" | |
| bottom: "pool1_stage1" | |
| top: "conv2_stage1" | |
| param { | |
| lr_mult: 5 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 10 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 4 | |
| kernel_size: 9 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu2_stage1" | |
| type: "ReLU" | |
| bottom: "conv2_stage1" | |
| top: "conv2_stage1" | |
| } | |
| layer { | |
| name: "pool2_stage1" | |
| type: "Pooling" | |
| bottom: "conv2_stage1" | |
| top: "pool2_stage1" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 3 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv3_stage1" | |
| type: "Convolution" | |
| bottom: "pool2_stage1" | |
| top: "conv3_stage1" | |
| param { | |
| lr_mult: 5 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 10 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 4 | |
| kernel_size: 9 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu3_stage1" | |
| type: "ReLU" | |
| bottom: "conv3_stage1" | |
| top: "conv3_stage1" | |
| } | |
| layer { | |
| name: "pool3_stage1" | |
| type: "Pooling" | |
| bottom: "conv3_stage1" | |
| top: "pool3_stage1" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 3 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv4_stage1" | |
| type: "Convolution" | |
| bottom: "pool3_stage1" | |
| top: "conv4_stage1" | |
| param { | |
| lr_mult: 5 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 10 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| pad: 2 | |
| kernel_size: 5 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_stage1" | |
| type: "ReLU" | |
| bottom: "conv4_stage1" | |
| top: "conv4_stage1" | |
| } | |
| layer { | |
| name: "conv5_stage1" | |
| type: "Convolution" | |
| bottom: "conv4_stage1" | |
| top: "conv5_stage1" | |
| param { | |
| lr_mult: 5 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 10 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| pad: 4 | |
| kernel_size: 9 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu5_stage1" | |
| type: "ReLU" | |
| bottom: "conv5_stage1" | |
| top: "conv5_stage1" | |
| } | |
| layer { | |
| name: "conv6_stage1" | |
| type: "Convolution" | |
| bottom: "conv5_stage1" | |
| top: "conv6_stage1" | |
| param { | |
| lr_mult: 5 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 10 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| pad: 0 | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu6_stage1" | |
| type: "ReLU" | |
| bottom: "conv6_stage1" | |
| top: "conv6_stage1" | |
| } | |
| layer { | |
| name: "conv7_stage1" | |
| type: "Convolution" | |
| bottom: "conv6_stage1" | |
| top: "conv7_stage1" | |
| param { | |
| lr_mult: 5 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 10 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 10 | |
| pad: 0 | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1_stage2" | |
| type: "Convolution" | |
| bottom: "image" | |
| top: "conv1_stage2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 4 | |
| kernel_size: 9 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu1_stage2" | |
| type: "ReLU" | |
| bottom: "conv1_stage2" | |
| top: "conv1_stage2" | |
| } | |
| layer { | |
| name: "pool1_stage2" | |
| type: "Pooling" | |
| bottom: "conv1_stage2" | |
| top: "pool1_stage2" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 3 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv2_stage2" | |
| type: "Convolution" | |
| bottom: "pool1_stage2" | |
| top: "conv2_stage2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 4 | |
| kernel_size: 9 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu2_stage2" | |
| type: "ReLU" | |
| bottom: "conv2_stage2" | |
| top: "conv2_stage2" | |
| } | |
| layer { | |
| name: "pool2_stage2" | |
| type: "Pooling" | |
| bottom: "conv2_stage2" | |
| top: "pool2_stage2" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 3 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv3_stage2" | |
| type: "Convolution" | |
| bottom: "pool2_stage2" | |
| top: "conv3_stage2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 4 | |
| kernel_size: 9 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu3_stage2" | |
| type: "ReLU" | |
| bottom: "conv3_stage2" | |
| top: "conv3_stage2" | |
| } | |
| layer { | |
| name: "pool3_stage2" | |
| type: "Pooling" | |
| bottom: "conv3_stage2" | |
| top: "pool3_stage2" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 3 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv4_stage2" | |
| type: "Convolution" | |
| bottom: "pool3_stage2" | |
| top: "conv4_stage2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| pad: 2 | |
| kernel_size: 5 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_stage2" | |
| type: "ReLU" | |
| bottom: "conv4_stage2" | |
| top: "conv4_stage2" | |
| } | |
| layer { | |
| name: "concat_stage2" | |
| type: "Concat" | |
| bottom: "conv4_stage2" | |
| bottom: "conv7_stage1" | |
| bottom: "pool_center_lower" | |
| top: "concat_stage2" | |
| concat_param { | |
| axis: 1 | |
| } | |
| } | |
| layer { | |
| name: "Mconv1_stage2" | |
| type: "Convolution" | |
| bottom: "concat_stage2" | |
| top: "Mconv1_stage2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 5 | |
| kernel_size: 11 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Mrelu1_stage2" | |
| type: "ReLU" | |
| bottom: "Mconv1_stage2" | |
| top: "Mconv1_stage2" | |
| } | |
| layer { | |
| name: "Mconv2_stage2" | |
| type: "Convolution" | |
| bottom: "Mconv1_stage2" | |
| top: "Mconv2_stage2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 5 | |
| kernel_size: 11 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Mrelu2_stage2" | |
| type: "ReLU" | |
| bottom: "Mconv2_stage2" | |
| top: "Mconv2_stage2" | |
| } | |
| layer { | |
| name: "Mconv3_stage2" | |
| type: "Convolution" | |
| bottom: "Mconv2_stage2" | |
| top: "Mconv3_stage2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 5 | |
| kernel_size: 11 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Mrelu3_stage2" | |
| type: "ReLU" | |
| bottom: "Mconv3_stage2" | |
| top: "Mconv3_stage2" | |
| } | |
| layer { | |
| name: "Mconv4_stage2" | |
| type: "Convolution" | |
| bottom: "Mconv3_stage2" | |
| top: "Mconv4_stage2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 0 | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Mrelu4_stage2" | |
| type: "ReLU" | |
| bottom: "Mconv4_stage2" | |
| top: "Mconv4_stage2" | |
| } | |
| layer { | |
| name: "Mconv5_stage2" | |
| type: "Convolution" | |
| bottom: "Mconv4_stage2" | |
| top: "Mconv5_stage2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 10 | |
| pad: 0 | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1_stage3" | |
| type: "Convolution" | |
| bottom: "pool3_stage2" | |
| top: "conv1_stage3" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| pad: 2 | |
| kernel_size: 5 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu1_stage3" | |
| type: "ReLU" | |
| bottom: "conv1_stage3" | |
| top: "conv1_stage3" | |
| } | |
| layer { | |
| name: "concat_stage3" | |
| type: "Concat" | |
| bottom: "conv1_stage3" | |
| bottom: "Mconv5_stage2" | |
| bottom: "pool_center_lower" | |
| top: "concat_stage3" | |
| concat_param { | |
| axis: 1 | |
| } | |
| } | |
| layer { | |
| name: "Mconv1_stage3" | |
| type: "Convolution" | |
| bottom: "concat_stage3" | |
| top: "Mconv1_stage3" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 5 | |
| kernel_size: 11 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Mrelu1_stage3" | |
| type: "ReLU" | |
| bottom: "Mconv1_stage3" | |
| top: "Mconv1_stage3" | |
| } | |
| layer { | |
| name: "Mconv2_stage3" | |
| type: "Convolution" | |
| bottom: "Mconv1_stage3" | |
| top: "Mconv2_stage3" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 5 | |
| kernel_size: 11 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Mrelu2_stage3" | |
| type: "ReLU" | |
| bottom: "Mconv2_stage3" | |
| top: "Mconv2_stage3" | |
| } | |
| layer { | |
| name: "Mconv3_stage3" | |
| type: "Convolution" | |
| bottom: "Mconv2_stage3" | |
| top: "Mconv3_stage3" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 5 | |
| kernel_size: 11 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Mrelu3_stage3" | |
| type: "ReLU" | |
| bottom: "Mconv3_stage3" | |
| top: "Mconv3_stage3" | |
| } | |
| layer { | |
| name: "Mconv4_stage3" | |
| type: "Convolution" | |
| bottom: "Mconv3_stage3" | |
| top: "Mconv4_stage3" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 0 | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Mrelu4_stage3" | |
| type: "ReLU" | |
| bottom: "Mconv4_stage3" | |
| top: "Mconv4_stage3" | |
| } | |
| layer { | |
| name: "Mconv5_stage3" | |
| type: "Convolution" | |
| bottom: "Mconv4_stage3" | |
| top: "Mconv5_stage3" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 10 | |
| pad: 0 | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1_stage4" | |
| type: "Convolution" | |
| bottom: "pool3_stage2" | |
| top: "conv1_stage4" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| pad: 2 | |
| kernel_size: 5 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu1_stage4" | |
| type: "ReLU" | |
| bottom: "conv1_stage4" | |
| top: "conv1_stage4" | |
| } | |
| layer { | |
| name: "concat_stage4" | |
| type: "Concat" | |
| bottom: "conv1_stage4" | |
| bottom: "Mconv5_stage3" | |
| bottom: "pool_center_lower" | |
| top: "concat_stage4" | |
| concat_param { | |
| axis: 1 | |
| } | |
| } | |
| layer { | |
| name: "Mconv1_stage4" | |
| type: "Convolution" | |
| bottom: "concat_stage4" | |
| top: "Mconv1_stage4" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 5 | |
| kernel_size: 11 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Mrelu1_stage4" | |
| type: "ReLU" | |
| bottom: "Mconv1_stage4" | |
| top: "Mconv1_stage4" | |
| } | |
| layer { | |
| name: "Mconv2_stage4" | |
| type: "Convolution" | |
| bottom: "Mconv1_stage4" | |
| top: "Mconv2_stage4" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 5 | |
| kernel_size: 11 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Mrelu2_stage4" | |
| type: "ReLU" | |
| bottom: "Mconv2_stage4" | |
| top: "Mconv2_stage4" | |
| } | |
| layer { | |
| name: "Mconv3_stage4" | |
| type: "Convolution" | |
| bottom: "Mconv2_stage4" | |
| top: "Mconv3_stage4" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 5 | |
| kernel_size: 11 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Mrelu3_stage4" | |
| type: "ReLU" | |
| bottom: "Mconv3_stage4" | |
| top: "Mconv3_stage4" | |
| } | |
| layer { | |
| name: "Mconv4_stage4" | |
| type: "Convolution" | |
| bottom: "Mconv3_stage4" | |
| top: "Mconv4_stage4" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| pad: 0 | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Mrelu4_stage4" | |
| type: "ReLU" | |
| bottom: "Mconv4_stage4" | |
| top: "Mconv4_stage4" | |
| } | |
| layer { | |
| name: "Mconv5_stage4" | |
| type: "Convolution" | |
| bottom: "Mconv4_stage4" | |
| top: "Mconv5_stage4" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 10 | |
| pad: 0 | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| } | |
| } | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment