-
-
Save gbaeza2002/0b7b53190468df8038ae049949f999c1 to your computer and use it in GitHub Desktop.
Script para deteccion de gatos
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import os | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import tensorflow as tf | |
| from tensorflow.keras.preprocessing import image | |
| from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input, decode_predictions | |
| # ----------------------------- | |
| # CONFIGURACIONES | |
| # ----------------------------- | |
| DATASET_DIR = "./imagenes caso D" # Carpeta de imágenes | |
| TARGET_CLASSES = ["cat", "tiger", "panther"] # Palabras clave de las clases | |
| IMG_SIZE = (224, 224) | |
| # ----------------------------- | |
| # CARGAR MODELO PREENTRENADO | |
| # ----------------------------- | |
| model = MobileNetV2(weights="imagenet") | |
| # ----------------------------- | |
| # VARIABLES PARA RECUENTO | |
| # ----------------------------- | |
| counts = {cls: 0 for cls in TARGET_CLASSES} | |
| # ----------------------------- | |
| # PROCESAR IMÁGENES | |
| # ----------------------------- | |
| for img_name in os.listdir(DATASET_DIR): | |
| img_path = os.path.join(DATASET_DIR, img_name) | |
| try: | |
| # Cargar y preprocesar imagen | |
| img = image.load_img(img_path, target_size=IMG_SIZE) | |
| x = image.img_to_array(img) | |
| x = np.expand_dims(x, axis=0) | |
| x = preprocess_input(x) | |
| # Predicción | |
| preds = model.predict(x) | |
| decoded = decode_predictions(preds, top=3)[0] | |
| # Buscar si la predicción corresponde a nuestras clases objetivo | |
| found_class = None | |
| for _, label, prob in decoded: | |
| label = label.lower() | |
| if "cat" in label and "wildcat" not in label: # excluir wildcat | |
| found_class = "cat" | |
| break | |
| elif "tiger" in label: | |
| found_class = "tiger" | |
| break | |
| elif "panther" in label or "jaguar" in label or "leopard" in label: | |
| found_class = "panther" | |
| break | |
| if found_class: | |
| counts[found_class] += 1 | |
| print(f"{img_name} -> {found_class}") | |
| else: | |
| print(f"{img_name} -> No identificado en {TARGET_CLASSES}") | |
| except Exception as e: | |
| print(f"Error con {img_name}: {e}") | |
| # ----------------------------- | |
| # MOSTRAR RECUENTO FINAL | |
| # ----------------------------- | |
| print("\nRecuento final:") | |
| for animal, count in counts.items(): | |
| print(f"{animal}: {count}") | |
| # ----------------------------- | |
| # GRAFICAR | |
| # ----------------------------- | |
| plt.bar(counts.keys(), counts.values()) | |
| plt.title("Recuento de animales detectados") | |
| plt.xlabel("Animal") | |
| plt.ylabel("Cantidad") | |
| plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment