Skip to content

Instantly share code, notes, and snippets.

@gaeljw
Created May 4, 2018 15:06
Show Gist options
  • Select an option

  • Save gaeljw/f8533c7cbdd11aa160e52a2244263f2b to your computer and use it in GitHub Desktop.

Select an option

Save gaeljw/f8533c7cbdd11aa160e52a2244263f2b to your computer and use it in GitHub Desktop.
Scala W4 Huffman
package patmat
import common._
/**
* Assignment 4: Huffman coding
*
*/
object Huffman {
/**
* A huffman code is represented by a binary tree.
*
* Every `Leaf` node of the tree represents one character of the alphabet that the tree can encode.
* The weight of a `Leaf` is the frequency of appearance of the character.
*
* The branches of the huffman tree, the `Fork` nodes, represent a set containing all the characters
* present in the leaves below it. The weight of a `Fork` node is the sum of the weights of these
* leaves.
*/
abstract class CodeTree
case class Fork(left: CodeTree, right: CodeTree, chars: List[Char], weight: Int) extends CodeTree
case class Leaf(char: Char, weight: Int) extends CodeTree
// Part 1: Basics
def weight(tree: CodeTree): Int = tree match {
case Fork(_, _, _, weight) => weight
case Leaf(_, weight) => weight
}
def chars(tree: CodeTree): List[Char] = tree match {
case Fork(_, _, chars, _) => chars
case Leaf(char, _) => List(char)
}
def makeCodeTree(left: CodeTree, right: CodeTree) =
Fork(left, right, chars(left) ::: chars(right), weight(left) + weight(right))
// Part 2: Generating Huffman trees
/**
* In this assignment, we are working with lists of characters. This function allows
* you to easily create a character list from a given string.
*/
def string2Chars(str: String): List[Char] = str.toList
/**
* This function computes for each unique character in the list `chars` the number of
* times it occurs. For example, the invocation
*
* times(List('a', 'b', 'a'))
*
* should return the following (the order of the resulting list is not important):
*
* List(('a', 2), ('b', 1))
*
* The type `List[(Char, Int)]` denotes a list of pairs, where each pair consists of a
* character and an integer. Pairs can be constructed easily using parentheses:
*
* val pair: (Char, Int) = ('c', 1)
*
* In order to access the two elements of a pair, you can use the accessors `_1` and `_2`:
*
* val theChar = pair._1
* val theInt = pair._2
*
* Another way to deconstruct a pair is using pattern matching:
*
* pair match {
* case (theChar, theInt) =>
* println("character is: "+ theChar)
* println("integer is : "+ theInt)
* }
*/
def times(chars: List[Char]): List[(Char, Int)] = {
def incCharCount(c: Char, count: List[(Char, Int)]): List[(Char, Int)] = count match {
case Nil => List((c, 1))
case (`c`, n) :: xs => (c, n + 1) :: xs
case x :: xs => x :: incCharCount(c, xs)
}
chars match {
case Nil => List()
case x :: xs => incCharCount(x, times(xs))
}
}
/**
* Returns a list of `Leaf` nodes for a given frequency table `freqs`.
*
* The returned list should be ordered by ascending weights (i.e. the
* head of the list should have the smallest weight), where the weight
* of a leaf is the frequency of the character.
*/
def makeOrderedLeafList(freqs: List[(Char, Int)]): List[Leaf] = {
freqs match {
case Nil => List()
case x :: xs => insert(Leaf(x._1, x._2), makeOrderedLeafList(xs))
}
// Or juste use map+sort method !
}
/**
* Insert a CodeTree in a sorted list of trees
*
* @param t
* @param trees
* @tparam T
* @return
*/
private def insert[T <: CodeTree](t: T, trees: List[T]): List[T] = trees match {
case Nil => List(t)
case x :: xs => if (weight(t) <= weight(x)) t :: trees else x :: insert(t, xs)
}
/**
* Checks whether the list `trees` contains only one single code tree.
*/
def singleton(trees: List[CodeTree]): Boolean = trees.size == 1
/**
* The parameter `trees` of this function is a list of code trees ordered
* by ascending weights.
*
* This function takes the first two elements of the list `trees` and combines
* them into a single `Fork` node. This node is then added back into the
* remaining elements of `trees` at a position such that the ordering by weights
* is preserved.
*
* If `trees` is a list of less than two elements, that list should be returned
* unchanged.
*/
def combine(trees: List[CodeTree]): List[CodeTree] = trees match {
case Nil => Nil
case x :: Nil => trees
case x :: y :: z => insert(makeCodeTree(x, y), z)
}
/**
* This function will be called in the following way:
*
* until(singleton, combine)(trees)
*
* where `trees` is of type `List[CodeTree]`, `singleton` and `combine` refer to
* the two functions defined above.
*
* In such an invocation, `until` should call the two functions until the list of
* code trees contains only one single tree, and then return that singleton list.
*
* Hint: before writing the implementation,
* - start by defining the parameter types such that the above example invocation
* is valid. The parameter types of `until` should match the argument types of
* the example invocation. Also define the return type of the `until` function.
* - try to find sensible parameter names for `xxx`, `yyy` and `zzz`.
*/
def until(stopPredicate: List[CodeTree] => Boolean, aggregateFunction: List[CodeTree] => List[CodeTree])(trees: List[CodeTree]): List[CodeTree] =
if (stopPredicate(trees)) trees else until(stopPredicate, aggregateFunction)(aggregateFunction(trees))
/**
* This function creates a code tree which is optimal to encode the text `chars`.
*
* The parameter `chars` is an arbitrary text. This function extracts the character
* frequencies from that text and creates a code tree based on them.
*/
def createCodeTree(chars: List[Char]): CodeTree = until(singleton, combine)(makeOrderedLeafList(times(chars)))(0)
// Part 3: Decoding
type Bit = Int
/**
* This function decodes the bit sequence `bits` using the code tree `tree` and returns
* the resulting list of characters.
*/
def decode(tree: CodeTree, bits: List[Bit]): List[Char] = {
def decodeRec(currentTree: CodeTree, bits: List[Bit]): List[Char] = currentTree match {
case Fork(left, right, _, _) => bits match {
case Nil => Nil
case 0 :: xs => decodeRec(left, xs)
case 1 :: xs => decodeRec(right, xs)
case x :: xs => throw new RuntimeException("Bit unknown")
}
case Leaf(char, _) => bits match {
case Nil => List(char)
case x :: xs => char :: decodeRec(tree, bits)
}
}
decodeRec(tree, bits)
}
/**
* A Huffman coding tree for the French language.
* Generated from the data given at
* http://fr.wikipedia.org/wiki/Fr%C3%A9quence_d%27apparition_des_lettres_en_fran%C3%A7ais
*/
val frenchCode: CodeTree = Fork(Fork(Fork(Leaf('s', 121895), Fork(Leaf('d', 56269), Fork(Fork(Fork(Leaf('x', 5928), Leaf('j', 8351), List('x', 'j'), 14279), Leaf('f', 16351), List('x', 'j', 'f'), 30630), Fork(Fork(Fork(Fork(Leaf('z', 2093), Fork(Leaf('k', 745), Leaf('w', 1747), List('k', 'w'), 2492), List('z', 'k', 'w'), 4585), Leaf('y', 4725), List('z', 'k', 'w', 'y'), 9310), Leaf('h', 11298), List('z', 'k', 'w', 'y', 'h'), 20608), Leaf('q', 20889), List('z', 'k', 'w', 'y', 'h', 'q'), 41497), List('x', 'j', 'f', 'z', 'k', 'w', 'y', 'h', 'q'), 72127), List('d', 'x', 'j', 'f', 'z', 'k', 'w', 'y', 'h', 'q'), 128396), List('s', 'd', 'x', 'j', 'f', 'z', 'k', 'w', 'y', 'h', 'q'), 250291), Fork(Fork(Leaf('o', 82762), Leaf('l', 83668), List('o', 'l'), 166430), Fork(Fork(Leaf('m', 45521), Leaf('p', 46335), List('m', 'p'), 91856), Leaf('u', 96785), List('m', 'p', 'u'), 188641), List('o', 'l', 'm', 'p', 'u'), 355071), List('s', 'd', 'x', 'j', 'f', 'z', 'k', 'w', 'y', 'h', 'q', 'o', 'l', 'm', 'p', 'u'), 605362), Fork(Fork(Fork(Leaf('r', 100500), Fork(Leaf('c', 50003), Fork(Leaf('v', 24975), Fork(Leaf('g', 13288), Leaf('b', 13822), List('g', 'b'), 27110), List('v', 'g', 'b'), 52085), List('c', 'v', 'g', 'b'), 102088), List('r', 'c', 'v', 'g', 'b'), 202588), Fork(Leaf('n', 108812), Leaf('t', 111103), List('n', 't'), 219915), List('r', 'c', 'v', 'g', 'b', 'n', 't'), 422503), Fork(Leaf('e', 225947), Fork(Leaf('i', 115465), Leaf('a', 117110), List('i', 'a'), 232575), List('e', 'i', 'a'), 458522), List('r', 'c', 'v', 'g', 'b', 'n', 't', 'e', 'i', 'a'), 881025), List('s', 'd', 'x', 'j', 'f', 'z', 'k', 'w', 'y', 'h', 'q', 'o', 'l', 'm', 'p', 'u', 'r', 'c', 'v', 'g', 'b', 'n', 't', 'e', 'i', 'a'), 1486387)
/**
* What does the secret message say? Can you decode it?
* For the decoding use the `frenchCode' Huffman tree defined above.
**/
val secret: List[Bit] = List(0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1)
/**
* Write a function that returns the decoded secret
*/
def decodedSecret: List[Char] = decode(frenchCode, secret)
def print(tree: CodeTree, tmp: String = ""): Unit = tree match {
case Fork(left, right, _, _) => print(left, tmp + '0'); print(right, tmp + '1')
case Leaf(char, _) => println(char.toString + "[" + tmp + "]")
}
// Part 4a: Encoding using Huffman tree
/**
* This function encodes `text` using the code tree `tree`
* into a sequence of bits.
*/
def encode(tree: CodeTree)(text: List[Char]): List[Bit] = {
def findChar(tree : CodeTree, c : Char, currentBits : List[Bit] = Nil) : Option[List[Bit]] = tree match {
case Fork(left, right, chars, _) => if (chars.contains(c)) findChar(left, c, currentBits :+ 0).orElse(findChar(right, c, currentBits :+ 1)) else None
case Leaf(x, _) => if (x == c) Some(currentBits) else None
}
text.foldLeft[List[Bit]](Nil)((l,c) => l ::: findChar(tree, c).get)
}
// Part 4b: Encoding using code table
type CodeTable = List[(Char, List[Bit])]
/**
* This function returns the bit sequence that represents the character `char` in
* the code table `table`.
*/
def codeBits(table: CodeTable)(char: Char): List[Bit] = table.find(_._1 == char).get._2
/**
* Given a code tree, create a code table which contains, for every character in the
* code tree, the sequence of bits representing that character.
*
* Hint: think of a recursive solution: every sub-tree of the code tree `tree` is itself
* a valid code tree that can be represented as a code table. Using the code tables of the
* sub-trees, think of how to build the code table for the entire tree.
*/
def convert(tree: CodeTree): CodeTable = tree match {
case Fork(left, right, _, _) => mergeCodeTables(convert(left).map(x => (x._1, 0 :: x._2)), convert(right).map(x => (x._1, 1 :: x._2)))
case Leaf(char, _) => List((char, Nil))
}
/**
* This function takes two code tables and merges them into one. Depending on how you
* use it in the `convert` method above, this merge method might also do some transformations
* on the two parameter code tables.
*/
def mergeCodeTables(a: CodeTable, b: CodeTable): CodeTable = a ::: b // Suppose no duplicate
/**
* This function encodes `text` according to the code tree `tree`.
*
* To speed up the encoding process, it first converts the code tree to a code table
* and then uses it to perform the actual encoding.
*/
def quickEncode(tree: CodeTree)(text: List[Char]): List[Bit] = {
val codeTable = convert(tree)
text.foldLeft[List[Bit]](Nil)((l, c) => l ::: codeBits(codeTable)(c))
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment