Created
August 16, 2022 01:10
-
-
Save firobeid/712b2b950ac2e3f89a8829015f07151d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def direction_model(): | |
| model = Sequential(name = 'RNNStocks') | |
| model.add(Embedding(input_dim = 185, output_dim = 256,batch_input_shape=[None, None], | |
| mask_zero = True, name ='EmbedLayer')) | |
| model.add(Bidirectional(LSTM(1024, | |
| return_sequences=False,stateful=False, | |
| recurrent_initializer='glorot_uniform'), merge_mode ='concat',name = 'BiLSTM')) | |
| #final state encodes full representation of a single passed headine | |
| model.add(BatchNormalization(name='BatchNormal')) #After RNN(S-shape activation-f(x) / Before ReLU(Non-Gaussian)) | |
| # model.add(tf.keras.layers.Masking(mask_value=0)) | |
| model.add(Dense(512, name = 'FullConnected', kernel_initializer='he_normal')) | |
| model.add(tf.keras.layers.LeakyReLU()) #controls vanishing gradients:f(x) = a * (exp(x) - 1.) for x < 0 ; f(x) = x for x >= 0 | |
| model.add(BatchNormalization(name='BatchNormal2')) | |
| model.add(Dense(1, activation='sigmoid',name='Output')) | |
| model.compile(optimizer=tf.optimizers.Adadelta(learning_rate = 1e-04), loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), | |
| metrics=['accuracy', tf.keras.metrics.AUC(name='AUC')]) | |
| return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment