- Create a
condaenvironment first with python version 3.7
conda create --name ml_env python=3.7
- Install jupterlab to use Jupyter notebook and install dependencies
conda install -c conda-forge jupyterlab
conda environment first with python version 3.7conda create --name ml_env python=3.7
conda install -c conda-forge jupyterlab
| def astar_search(graph, start, goal): | |
| path = [] | |
| explored_nodes = list() | |
| if start == goal: | |
| return path, explored_nodes | |
| path.append(start) | |
| path_cost = get_manhattan_heuristic(start, goal) |
| def get_manhattan_heuristic(node, goal): | |
| i, j = divmod(int(node), 8) | |
| i_goal, j_goal = divmod(int(goal), 8) | |
| i_delta = abs(i - i_goal) | |
| j_delta = abs(j - j_goal) | |
| manhattan_dist = i_delta + j_delta | |
| return manhattan_dist |
| def uniform_cost_search(graph, start, goal): | |
| path = [] | |
| explored_nodes = list() | |
| if start == goal: | |
| return path, explored_nodes | |
| path.append(start) | |
| path_cost = 0 | |
| def uniform_cost_search(graph, start, goal): | |
| path = [] | |
| explored_nodes = list() | |
| if start == goal: | |
| return path, explored_nodes | |
| path.append(start) | |
| path_cost = 0 | |
| initialize replay memory R | |
| initialize action-value function Q (with random weights) | |
| observe initial state s | |
| repeat | |
| select an action a | |
| with probability ϵ select a random action | |
| otherwise select a= argmaxa′Q(s,a′) | |
| carry out action a | |
| observe reward rr and new state s’ | |
| store experience <s,a,r,s> in replay memory R |
| //This is 100% marks solution for the demo test PrefixSet https://codility.com/demo/take-sample-test/ps/ | |
| import java.util.Hashtable; | |
| class Solution2 { | |
| public int solution(int[] A) { | |
| Hashtable<Integer, Integer> map = new Hashtable<>(); | |
| for(int i : A){ | |
| if(map.containsKey(i)){ | |
| map.put(i, map.get(i) +1); | |
| }else{ | |
| map.put(i, 1); |
| // 100% marks solution for the github demo test | |
| // Find an index in an array such that its prefix sum equals its suffix sum. | |
| class Solution { | |
| public int solution(int[] A) { | |
| if(A.length == 0){ | |
| return -1; | |
| } | |
| long leftSum = 0; | |
| long rightSum = getSum(A); |