Skip to content

Instantly share code, notes, and snippets.

@egorsmkv
Last active January 12, 2026 14:33
Show Gist options
  • Select an option

  • Save egorsmkv/c2678d2b4e3bc009c2035b6909bb8c73 to your computer and use it in GitHub Desktop.

Select an option

Save egorsmkv/c2678d2b4e3bc009c2035b6909bb8c73 to your computer and use it in GitHub Desktop.
// Compile with:
// clang -O3 -march=znver4 -fopenmp -ffast-math -mavx512f -mavx512dq amd_zen_matrix.c -o amd_zen_matrix
// Note: Use -march=znver5 if available in your compiler (GCC 14+ / Clang 18+).
// If not, -march=znver4 is safe and highly effective for Ryzen 9000.
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <time.h>
#include <immintrin.h> // Essential for AVX-512
#include <omp.h> // Essential for multicore scaling
// --- Architecture Constants ---
#define BATCH_SIZE 8 // AVX-512 holds 8 doubles
#define ALIGNMENT 64 // Cache line size (Zen 5)
// --- Helper: Aligned Memory Allocation ---
void* aligned_alloc_wrapper(size_t alignment, size_t size) {
#if defined(_MSC_VER)
return _aligned_malloc(size, alignment);
#else
return aligned_alloc(alignment, size);
#endif
}
void aligned_free_wrapper(void* ptr) {
#if defined(_MSC_VER)
_aligned_free(ptr);
#else
free(ptr);
#endif
}
// --- Original Scalar Implementation (Optimized Attributes) ---
// Using 'static inline' to encourage inlining into tight loops
static inline void mat33_mul_rank23_scalar(double *restrict C, const double *restrict A, const double *restrict B) {
const double a11 = A[0], a12 = A[1], a13 = A[2];
const double a21 = A[3], a22 = A[4], a23 = A[5];
const double a31 = A[6], a32 = A[7], a33 = A[8];
const double b11 = B[0], b12 = B[1], b13 = B[2];
const double b21 = B[3], b22 = B[4], b23 = B[5];
const double b31 = B[6], b32 = B[7], b33 = B[8];
const double u1 = a31 + a33;
const double u2 = a21 + a22;
const double u3 = a13 + u1;
const double u4 = a32 - u2;
const double v1 = b22 + b32;
const double v2 = b31 - v1;
const double v3 = b12 + v2;
const double v4 = b11 - v3;
const double v5 = b33 + v1;
const double v6 = b21 - b23;
const double v7 = b12 - v5;
const double v8 = v4 - v6;
const double m1 = u1 * v5;
const double m2 = u2 * (v2 + v6);
const double m3 = a32 * b23;
const double m4 = a31 * (b13 + v7);
const double m5 = u3 * v7;
const double m6 = (a32 - a33) * b22;
const double m7 = a23 * b33;
const double m8 = (u1 - u2) * v2;
const double m9 = (a12 - a13) * b22;
const double m10 = (u3 - a21) * v3;
const double m11 = (a13 + a33) * (v1 - b12);
const double m12 = a13 * b33;
const double m13 = (a31 + u4) * v4;
const double m14 = a11 * b13;
const double m15 = (a11 + u3) * b12;
const double m16 = (a13 + a23) * b31;
const double m17 = (a22 - a32) * (v4 - b21);
const double m18 = (a11 + a21) * b11;
const double m19 = a12 * b23;
const double m20 = (a12 + a22) * b21;
const double m21 = a21 * (b13 - v8);
const double m22 = (a22 - a23) * (b31 - b32);
const double m23 = u4 * v8;
const double w1 = m5 + m12;
const double w2 = m1 + w1;
const double w3 = m8 + w2;
const double w4 = m3 - m23;
const double w5 = m2 + w4;
const double w6 = w3 + w5;
const double w7 = m10 - w6;
const double w8 = m17 + w7;
C[0] = m18 + m20 + w8;
C[1] = m9 + m15 - w2;
C[2] = m12 + m14 + m19;
C[3] = m16 - w8;
C[4] = m16 + m22 + w3 - m10;
C[5] = m7 + m21 + w4 - m17;
C[6] = m11 + m13 + w6;
C[7] = m6 + m11 + w2;
C[8] = m3 + m4 - m11 - w1;
}
// --- Zen 5 Optimized: AVX-512 Batched Perminov ---
// This processes 8 separate 3x3 matrix multiplications simultaneously.
// Input layout:
// A_batch points to a block of 8 matrices.
// Specifically, we load A[0] from matrix 0, A[0] from matrix 1... A[0] from matrix 7 into one register.
// This requires the input data to be organized or gathered efficiently.
// For high perf, we assume data is loaded Strided or Transposed,
// but here we use gathers to support standard array-of-structs layout
// (which is slower but drop-in compatible) OR we assume the user organizes data for the batch.
//
// To demonstrate maximum Zen 5 throughput, this function assumes 'vA' and 'vB' are
// arrays of __m512d where index 0 contains (a11_mat0, a11_mat1... a11_mat7).
// This implies a "Structure of Arrays" (SoA) layout for the batch.
static inline void mat33_mul_rank23_avx512_soa(
__m512d *restrict vC,
const __m512d *restrict vA,
const __m512d *restrict vB
) {
// --- Input Loading (Assumes SoA Layout) ---
// vA[0] = [a11_0, a11_1, ..., a11_7]
// vA[1] = [a12_0, a12_1, ..., a12_7]
// ...
// U terms
__m512d u1 = _mm512_add_pd(vA[6], vA[8]); // a31 + a33
__m512d u2 = _mm512_add_pd(vA[3], vA[4]); // a21 + a22
__m512d u3 = _mm512_add_pd(vA[2], u1); // a13 + u1
__m512d u4 = _mm512_sub_pd(vA[7], u2); // a32 - u2
// V terms
__m512d v1 = _mm512_add_pd(vB[4], vB[7]); // b22 + b32
__m512d v2 = _mm512_sub_pd(vB[6], v1); // b31 - v1
__m512d v3 = _mm512_add_pd(vB[1], v2); // b12 + v2
__m512d v4 = _mm512_sub_pd(vB[0], v3); // b11 - v3
__m512d v5 = _mm512_add_pd(vB[8], v1); // b33 + v1
__m512d v6 = _mm512_sub_pd(vB[3], vB[5]); // b21 - b23
__m512d v7 = _mm512_sub_pd(vB[1], v5); // b12 - v5
__m512d v8 = _mm512_sub_pd(v4, v6); // v4 - v6
// M terms (Multiplications)
__m512d m1 = _mm512_mul_pd(u1, v5);
__m512d m2 = _mm512_mul_pd(u2, _mm512_add_pd(v2, v6));
__m512d m3 = _mm512_mul_pd(vA[7], vB[5]); // a32 * b23
__m512d m4 = _mm512_mul_pd(vA[6], _mm512_add_pd(vB[2], v7));
__m512d m5 = _mm512_mul_pd(u3, v7);
__m512d m6 = _mm512_mul_pd(_mm512_sub_pd(vA[7], vA[8]), vB[4]);
__m512d m7 = _mm512_mul_pd(vA[5], vB[8]);
__m512d m8 = _mm512_mul_pd(_mm512_sub_pd(u1, u2), v2);
__m512d m9 = _mm512_mul_pd(_mm512_sub_pd(vA[1], vA[2]), vB[4]);
__m512d m10 = _mm512_mul_pd(_mm512_sub_pd(u3, vA[3]), v3);
__m512d m11 = _mm512_mul_pd(_mm512_add_pd(vA[2], vA[8]), _mm512_sub_pd(v1, vB[1]));
__m512d m12 = _mm512_mul_pd(vA[2], vB[8]);
__m512d m13 = _mm512_mul_pd(_mm512_add_pd(vA[6], u4), v4);
__m512d m14 = _mm512_mul_pd(vA[0], vB[2]);
__m512d m15 = _mm512_mul_pd(_mm512_add_pd(vA[0], u3), vB[1]);
__m512d m16 = _mm512_mul_pd(_mm512_add_pd(vA[2], vA[5]), vB[6]);
__m512d m17 = _mm512_mul_pd(_mm512_sub_pd(vA[4], vA[7]), _mm512_sub_pd(v4, vB[3]));
__m512d m18 = _mm512_mul_pd(_mm512_add_pd(vA[0], vA[3]), vB[0]);
__m512d m19 = _mm512_mul_pd(vA[1], vB[5]);
__m512d m20 = _mm512_mul_pd(_mm512_add_pd(vA[1], vA[4]), vB[3]);
__m512d m21 = _mm512_mul_pd(vA[3], _mm512_sub_pd(vB[2], v8));
__m512d m22 = _mm512_mul_pd(_mm512_sub_pd(vA[4], vA[5]), _mm512_sub_pd(vB[6], vB[7]));
__m512d m23 = _mm512_mul_pd(u4, v8);
// W terms (Post-computations)
__m512d w1 = _mm512_add_pd(m5, m12);
__m512d w2 = _mm512_add_pd(m1, w1);
__m512d w3 = _mm512_add_pd(m8, w2);
__m512d w4 = _mm512_sub_pd(m3, m23);
__m512d w5 = _mm512_add_pd(m2, w4);
__m512d w6 = _mm512_add_pd(w3, w5);
__m512d w7 = _mm512_sub_pd(m10, w6);
__m512d w8 = _mm512_add_pd(m17, w7);
// C terms (Result Construction)
vC[0] = _mm512_add_pd(_mm512_add_pd(m18, m20), w8);
vC[1] = _mm512_sub_pd(_mm512_add_pd(m9, m15), w2);
vC[2] = _mm512_add_pd(_mm512_add_pd(m12, m14), m19);
vC[3] = _mm512_sub_pd(m16, w8);
vC[4] = _mm512_sub_pd(_mm512_add_pd(_mm512_add_pd(m16, m22), w3), m10);
vC[5] = _mm512_sub_pd(_mm512_add_pd(_mm512_add_pd(m7, m21), w4), m17);
vC[6] = _mm512_add_pd(_mm512_add_pd(m11, m13), w6);
vC[7] = _mm512_add_pd(_mm512_add_pd(m6, m11), w2);
vC[8] = _mm512_sub_pd(_mm512_sub_pd(_mm512_add_pd(m3, m4), m11), w1);
}
// --- Utils ---
static inline double now_seconds(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (double)ts.tv_sec + (double)ts.tv_nsec * 1e-9;
}
void fill_random(double *M, size_t count) {
for (size_t i = 0; i < count; i++) {
M[i] = ((double)rand() / (double)RAND_MAX) * 2.0 - 1.0;
}
}
// --- Driver ---
int main(int argc, char **argv) {
// We want to process a large number of matrices to test throughput
// 9900X L3 cache is large, but let's keep working set reasonable to measure core math
const int N_MATRICES = 1024 * 1024 * 10; // 10 Million matrices
const size_t elements = N_MATRICES * 9;
const size_t bytes = elements * sizeof(double);
printf("Allocating %.2f MB for matrices...\n", (double)bytes * 3 / (1024*1024));
double *A_store = (double*)aligned_alloc_wrapper(ALIGNMENT, bytes);
double *B_store = (double*)aligned_alloc_wrapper(ALIGNMENT, bytes);
double *C_store = (double*)aligned_alloc_wrapper(ALIGNMENT, bytes);
// For AVX SoA test, we need transposed storage
double *A_soa = (double*)aligned_alloc_wrapper(ALIGNMENT, bytes);
double *B_soa = (double*)aligned_alloc_wrapper(ALIGNMENT, bytes);
double *C_soa = (double*)aligned_alloc_wrapper(ALIGNMENT, bytes);
if (!A_store || !B_store || !C_store) {
printf("Memory allocation failed.\n");
return 1;
}
fill_random(A_store, elements);
fill_random(B_store, elements);
// --- Prepare SoA Data ---
// Transform Array of Structs (standard 3x3 layout) to Structure of Arrays
// (Batches of 8 matrices where a11s are contiguous)
#pragma omp parallel for schedule(static)
for (int i = 0; i < N_MATRICES; i += BATCH_SIZE) {
for (int k = 0; k < 9; k++) {
for (int j = 0; j < BATCH_SIZE; j++) {
if (i+j < N_MATRICES) {
A_soa[(i * 9) + (k * BATCH_SIZE) + j] = A_store[(i + j) * 9 + k];
B_soa[(i * 9) + (k * BATCH_SIZE) + j] = B_store[(i + j) * 9 + k];
}
}
}
}
printf("Starting Benchmarks on Ryzen 9 9900X (Zen 5)...\n");
// --- Benchmark 1: Standard Scalar (Single Thread) ---
double t0 = now_seconds();
for (int i = 0; i < N_MATRICES; i++) {
mat33_mul_rank23_scalar(&C_store[i*9], &A_store[i*9], &B_store[i*9]);
}
double t1 = now_seconds();
printf("Scalar (1 Core): %.4f s | %.2f M Matrices/s\n",
t1 - t0, N_MATRICES / (t1 - t0) / 1e6);
// --- Benchmark 2: Standard Scalar (OpenMP Multi-Core) ---
// Zen 5 scales well with SMT, but for pure FPU throughput, physical cores matter most.
t0 = now_seconds();
#pragma omp parallel for schedule(static)
for (int i = 0; i < N_MATRICES; i++) {
mat33_mul_rank23_scalar(&C_store[i*9], &A_store[i*9], &B_store[i*9]);
}
t1 = now_seconds();
printf("Scalar (OpenMP): %.4f s | %.2f M Matrices/s\n",
t1 - t0, N_MATRICES / (t1 - t0) / 1e6);
// --- Benchmark 3: AVX-512 SoA (Single Thread) ---
t0 = now_seconds();
// Pointers to __m512d types for easy indexing
__m512d *vA_ptr = (__m512d*)A_soa;
__m512d *vB_ptr = (__m512d*)B_soa;
__m512d *vC_ptr = (__m512d*)C_soa;
// 9 vectors make up one "block" of 8 matrices
int num_blocks = N_MATRICES / BATCH_SIZE;
for (int i = 0; i < num_blocks; i++) {
mat33_mul_rank23_avx512_soa(&vC_ptr[i*9], &vA_ptr[i*9], &vB_ptr[i*9]);
}
t1 = now_seconds();
printf("AVX-512 (1 Core): %.4f s | %.2f M Matrices/s\n",
t1 - t0, N_MATRICES / (t1 - t0) / 1e6);
// --- Benchmark 4: AVX-512 SoA (OpenMP Multi-Core) ---
// This combines 512-bit width with 12 cores.
t0 = now_seconds();
#pragma omp parallel for schedule(static)
for (int i = 0; i < num_blocks; i++) {
mat33_mul_rank23_avx512_soa(&vC_ptr[i*9], &vA_ptr[i*9], &vB_ptr[i*9]);
}
t1 = now_seconds();
printf("AVX-512 (OpenMP): %.4f s | %.2f M Matrices/s\n",
t1 - t0, N_MATRICES / (t1 - t0) / 1e6);
// --- Cleanup ---
aligned_free_wrapper(A_store);
aligned_free_wrapper(B_store);
aligned_free_wrapper(C_store);
aligned_free_wrapper(A_soa);
aligned_free_wrapper(B_soa);
aligned_free_wrapper(C_soa);
return 0;
}
// clang -O0 -march=native fast_matrix_mult.c -o fast_matrix_mult
// clang -O3 -ffast-math -march=native fast_matrix_mult.c -o fast_matrix_mult
// clang -O3 -ffast-math -march=native -funroll-loops -fomit-frame-pointer -DNDEBUG fast_matrix_mult.c -o fast_matrix_mult
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <time.h>
/**
* Perminov's Rank-23, 58-Addition Scheme for 3x3 Matrix Multiplication.
* * Target: General non-commutative rings (implemented here for double).
* Optimization:
* - 'restrict' for pointer aliasing optimization.
* - 'const' for SSA-friendly intermediate variable generation.
* - Stack-allocated intermediates to avoid heap overhead.
* * Matrix Layout: Row-major
* Indices: 0:11, 1:12, 2:13, 3:21, 4:22, 5:23, 6:31, 7:32, 8:33
*/
void mat33_mul_rank23(double *restrict C, const double *restrict A, const double *restrict B) {
// --- Input Aliases for Readability (Compiler will optimize these out) ---
const double a11 = A[0], a12 = A[1], a13 = A[2];
const double a21 = A[3], a22 = A[4], a23 = A[5];
const double a31 = A[6], a32 = A[7], a33 = A[8];
const double b11 = B[0], b12 = B[1], b13 = B[2];
const double b21 = B[3], b22 = B[4], b23 = B[5];
const double b31 = B[6], b32 = B[7], b33 = B[8];
// --- Phase 1: Pre-computations (U and V terms) ---
// Total Additions: 4 (U) + 8 (V) = 12
// U terms (Linear combinations of A)
const double u1 = a31 + a33;
const double u2 = a21 + a22;
const double u3 = a13 + u1; // Dependency on u1
const double u4 = a32 - u2; // Dependency on u2
// V terms (Linear combinations of B)
const double v1 = b22 + b32;
const double v2 = b31 - v1; // Dependency on v1
const double v3 = b12 + v2; // Dependency on v2
const double v4 = b11 - v3; // Dependency on v3
const double v5 = b33 + v1; // Dependency on v1
const double v6 = b21 - b23;
const double v7 = b12 - v5; // Dependency on v5
const double v8 = v4 - v6; // Dependency on v4, v6
// --- Phase 2: Multiplications (M terms) ---
// 23 Multiplications
// 18 Additions inside the products
const double m1 = u1 * v5;
const double m2 = u2 * (v2 + v6);
const double m3 = a32 * b23;
const double m4 = a31 * (b13 + v7);
const double m5 = u3 * v7;
const double m6 = (a32 - a33) * b22;
const double m7 = a23 * b33;
const double m8 = (u1 - u2) * v2;
const double m9 = (a12 - a13) * b22;
const double m10 = (u3 - a21) * v3;
const double m11 = (a13 + a33) * (v1 - b12);
const double m12 = a13 * b33;
const double m13 = (a31 + u4) * v4;
const double m14 = a11 * b13;
const double m15 = (a11 + u3) * b12;
const double m16 = (a13 + a23) * b31;
const double m17 = (a22 - a32) * (v4 - b21);
const double m18 = (a11 + a21) * b11;
const double m19 = a12 * b23;
const double m20 = (a12 + a22) * b21;
const double m21 = a21 * (b13 - v8);
const double m22 = (a22 - a23) * (b31 - b32);
const double m23 = u4 * v8;
// --- Phase 3: Post-computations (W terms) ---
// Total Additions: 8
const double w1 = m5 + m12;
const double w2 = m1 + w1;
const double w3 = m8 + w2;
const double w4 = m3 - m23;
const double w5 = m2 + w4;
const double w6 = w3 + w5;
const double w7 = m10 - w6;
const double w8 = m17 + w7;
// --- Phase 4: Construct Result (C terms) ---
// Total Additions: 20
// Row 1
C[0] = m18 + m20 + w8; // c11
C[1] = m9 + m15 - w2; // c12
C[2] = m12 + m14 + m19; // c13
// Row 2
C[3] = m16 - w8; // c21
C[4] = m16 + m22 + w3 - m10; // c22
C[5] = m7 + m21 + w4 - m17; // c23
// Row 3
C[6] = m11 + m13 + w6; // c31
C[7] = m6 + m11 + w2; // c32
C[8] = m3 + m4 - m11 - w1; // c33
}
// --- Verification/Usage Driver ---
void print_mat33(const char *name, const double *M) {
printf("%s:\n", name);
for (int i = 0; i < 3; i++) {
printf(" %8.2f %8.2f %8.2f\n", M[i*3+0], M[i*3+1], M[i*3+2]);
}
printf("\n");
}
static inline double now_seconds(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (double)ts.tv_sec + (double)ts.tv_nsec * 1e-9;
}
void format_uint64_commas(uint64_t value, char *out, size_t out_size) {
char buf[32];
int i = 0;
int group = 0;
do {
if (group == 3) {
buf[i++] = ',';
group = 0;
}
buf[i++] = (char)('0' + (value % 10));
value /= 10;
group++;
} while (value > 0 && i < (int)sizeof(buf) - 1);
if (i >= (int)sizeof(buf)) {
if (out_size > 0) {
out[0] = '\0';
}
return;
}
int j = 0;
while (i > 0 && j < (int)out_size - 1) {
out[j++] = buf[--i];
}
out[j] = '\0';
}
void fill_mat33_random(double *M) {
for (int i = 0; i < 9; i++) {
double r = (double)rand() / (double)RAND_MAX;
M[i] = r * 2.0 - 1.0;
}
}
void mat33_mul_naive(double *restrict C, const double *restrict A, const double *restrict B) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
double acc = 0.0;
for (int k = 0; k < 3; k++) {
acc += A[i*3+k] * B[k*3+j];
}
C[i*3+j] = acc;
}
}
}
static inline double sum_mat33(const double *M) {
return M[0] + M[1] + M[2] +
M[3] + M[4] + M[5] +
M[6] + M[7] + M[8];
}
int main(int argc, char **argv) {
// Example matrices
double A[9] = {0};
double B[9] = {0};
double C[9] = {0}; // Result
double C_check[9] = {0};
srand((unsigned)time(NULL));
fill_mat33_random(A);
fill_mat33_random(B);
// Execute Perminov's Algorithm
mat33_mul_rank23(C, A, B);
// Naive Check (for verification logic only)
mat33_mul_naive(C_check, A, B);
print_mat33("Matrix A", A);
print_mat33("Matrix B", B);
print_mat33("Result C (Perminov Rank-23)", C);
print_mat33("Result Check (Naive)", C_check);
// --- Timing comparison ---
uint64_t iterations = 10000000ULL;
if (argc > 1) {
char *end = NULL;
unsigned long long parsed = strtoull(argv[1], &end, 10);
if (end != argv[1] && parsed > 0) {
iterations = (uint64_t)parsed;
}
}
const uint64_t warmup = 100000ULL;
volatile double sink = 0.0;
double checksum_rank23 = 0.0;
double checksum_naive = 0.0;
double t0, t1;
char iters_str[32];
format_uint64_commas(iterations, iters_str, sizeof(iters_str));
printf("Iterations: %s (warmup: %llu)\n",
iters_str[0] ? iters_str : "N/A",
(unsigned long long)warmup);
for (uint64_t it = 0; it < warmup; it++) {
mat33_mul_rank23(C, A, B);
sink += C[it % 9];
}
t0 = now_seconds();
for (uint64_t it = 0; it < iterations; it++) {
mat33_mul_rank23(C, A, B);
sink += C[it % 9];
checksum_rank23 += sum_mat33(C);
}
t1 = now_seconds();
printf("Perminov Rank-23: %.6f s (sink=%.2f)\n", t1 - t0, sink);
double time_rank23 = t1 - t0;
for (uint64_t it = 0; it < warmup; it++) {
mat33_mul_naive(C, A, B);
sink += C[(it + 3) % 9];
}
t0 = now_seconds();
for (uint64_t it = 0; it < iterations; it++) {
mat33_mul_naive(C, A, B);
sink += C[(it + 3) % 9];
checksum_naive += sum_mat33(C);
}
t1 = now_seconds();
printf("Naive O(N^3): %.6f s (sink=%.2f)\n", t1 - t0, sink);
double time_naive = t1 - t0;
printf("Checksums: rank23=%.6f naive=%.6f diff=%.6f\n",
checksum_rank23, checksum_naive, checksum_rank23 - checksum_naive);
if (time_rank23 > 0.0 && time_naive > 0.0) {
double speedup = time_naive / time_rank23;
printf("Speedup: %.2fx (naive / rank23)\n", speedup);
}
if (time_rank23 < time_naive) {
printf("Winner: Perminov Rank-23\n");
} else if (time_naive < time_rank23) {
printf("Winner: Naive O(N^3)\n");
} else {
printf("Winner: Tie\n");
}
return 0;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment