I hereby claim:
- I am eclarke on github.
- I am erikclarke (https://keybase.io/erikclarke) on keybase.
- I have a public key ASDtTlFKxCJoOWfwfhHy-MJtbmGKnvzo-zxrJETJmi1kNQo
To claim this, I am signing this object:
| #!/bin/bash | |
| curl --header 'Access-Token: <your_access_token_here>' \ | |
| --header 'Content-Type: application/json' \ | |
| --data-binary '{"body":":)","title":"$@","type":"note"}' \ | |
| --request POST \ | |
| https://api.pushbullet.com/v2/pushes |
I hereby claim:
To claim this, I am signing this object:
| # This is the testing function that builds the models | |
| testMixedEffects <- function(test.col) { | |
| # We return this default in case of error/no fit | |
| default <- list(null.model=NA, model=NA) | |
| counts <- .mat[, colnames(.mat)==test.col] | |
| if (sum(counts > 0)/length(counts) < sparsity) { | |
| message(sprintf("%s: too sparse, skipping", test.col)) | |
| return(default) | |
| } |
| # Using indicspecies with a melted data frame | |
| # Their input is actually not hard to work with. First we need to re-create the count matrix. | |
| # This creates a data frame with the sample ID and study group as the first two columns, then each column after that is an OTU name | |
| # (Replace column names as appropriate) | |
| mat <- melted.df %>% reshape2::dcast(SampleID + StudyGroup ~ otu) | |
| # Next, we actually convert things into inputs | |
| # Hadley's stuff hates rownames, so we have to remake them | |
| rownames(mat) = mat$SampleID |
| docs: | |
| Rscript -e "devtools::document(roclets=c('rd', 'collate', 'namespace', 'vignette'))" | |
| gh-pages: | |
| git checkout gh-pages | |
| git merge master -X theirs -m "merge master" | |
| site:docs gh-pages | |
| Rscript -e "staticdocs::build_site(site_path='.', launch=FALSE)" | |
| git commit -am 'updated docs' |
| # Indicator value functions ----------------------------------------------- | |
| #' Returns the indicator value (Dufrene, 1997) for a given row of species counts | |
| #' along with a vector of class assignments. | |
| #' @param row: vector of counts (usually a row in a counts matrix) | |
| #' @param class: which level in the grouping variable to test | |
| #' @param classes: factor describing the grouping of the counts vector | |
| .indval <- function(row, class, classes) { | |
| idxs <- classes == class | |
| A.ij <- sum(row[idxs]) / sum(row) |
| alpha_diversity <- function(df, group.col, freq.col) { | |
| # Returns a variety of diversity indices, including the Gini-Simpson index, | |
| # the inverse Simpson index, and the Shannon-Weaver index. The SW index is | |
| # calculated using the natural logarithm. | |
| # | |
| # Arguments: | |
| # df: a data frame where the rows are species, with a column containing the | |
| # grouping variable and another column containing the proportional | |
| # abundances of each species | |
| # group: the name of the column defining the grouping variable |
| >denovo1793 | |
| GGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTATGTATCGTCGCCTTGGTGAGCCGTTACCCCACCAACTAGCTAATACAACGCAGGTCCATCTGGTAGTGATGCAATTGCACCTTTTAATTGACTATCATGCAATAGTCAATATTATGCGGTATTAGCTATCGTTTCCAATAGTTATCCCCCGCTACCAGGCAGGTTACCTACGCGTTACTCACCCGTTCGCAACTCATCCAGAGAAGCAAGCTCCTCCTTCAGCGTTCTACTTGCATGTATTAGGCACGCCGCCAGCGTTCGTC | |
| >denovo2518 | |
| GGAGTTTGGGCCGTGTCTCAGTCCCAATGTGGCCGATCACCCTCTCAGGTCGGCTATGCATCACGGCCTTGGTGAGCCGTTACCTCACCAACTAGCTAATGCACCGCGGGTCCATCCATCAGCAGAAGCTTGCGCCTCTTTTCCTCTTCAAACCATGCGGTTCGAAGACCTATGCGGTTTTAGCATCCGTTTCCGAATGTTATCCCCCTCTGATGGGCAGGTTACCCACGTGTTACTCACCCGTTCGCCACTAGATTGACCAGTGCAAGCACCGGTCGCTCTCGTTCGACTTGCATGTATTAGGCACGCCGCCAGCGTTCGTC | |
| >denovo271 | |
| GGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTATGTATCGTCGCCTTGGTGAGCCGTTACCCCACCAACTAGCTAATACAACGCAGGTCCATCTGGTAGTGATGCAATTGCACCTTTTAAGCAAATGTCATGCAACATTTACTGTTATGCGGTATTAGCTATCGTTTCCAATAGTTATCCCCCGNTACCAGGCAGGTTACCTACGCGTTACTCACCCGTTCGCAACTCGTCCAGAAGAGCAAGCTCTCCCTTCAGCGTTCTACTTGCATGTATTAGGCACGCCGCCAGCGTTCGTC | |
| >denovo3052 | |
| GGAGTCTGGTCCG |
| # -*- coding: utf-8 -*- | |
| """ | |
| Uses a context manager to provide a dictionary as a 'namespace' of sorts, | |
| allowing you to use dot notation to work with the dictionary. Example: | |
| d = {'a': 5, 'b': 10} | |
| with named(d) as n: | |
| # prints 5 | |
| print n.a | |
| # reassignment changes both n and d |