Last active
August 2, 2017 17:29
-
-
Save dimuthnc/4027420e54b109eb81815b41f98c821e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from sklearn import linear_model | |
| import numpy as np | |
| import pandas as pd | |
| from sklearn.cross_validation import train_test_split | |
| def evaluate(train_set,features,a): | |
| total_score =0 | |
| for x in range(10): | |
| train, test = train_test_split(train_set, train_size = 0.8) | |
| train_data = train[features] | |
| train_target = train.total_cases | |
| test_data = test[features] | |
| test_target = test['total_cases'] | |
| testModel = linear_model.Lasso(alpha=a) | |
| testModel.fit(train_data,train_target) | |
| test_results= testModel.predict(test_data) | |
| test_results= [int(round(i)) for i in test_results] | |
| MAE=0 | |
| for index in range(0,len(test_results)): | |
| MAE += abs(test_results[index]-test_target[index]) | |
| total_score+=(MAE/float(len(test_results))) | |
| #print(MAE) | |
| return total_score/(10.0) | |
| df = pd.read_csv('Data/lag_dengue_features_train.csv', index_col=[0, 1, 2]) | |
| df.fillna(method='ffill', inplace=True) | |
| sj = df.loc['sj'] | |
| iq = df.loc['iq'] | |
| features_sj = ['reanalysis_specific_humidity_g_per_kg','reanalysis_dew_point_temp_k','station_avg_temp_c','reanalysis_max_air_temp_k'] | |
| features_iq = ['reanalysis_specific_humidity_g_per_kg','reanalysis_dew_point_temp_k','reanalysis_min_air_temp_k','station_min_temp_c'] | |
| sj = sj[features_sj] | |
| iq = iq[features_iq] | |
| df_test = pd.read_csv('Data/lag_dengue_features_test.csv', index_col=[0, 1, 2]) | |
| df_test.fillna(method='ffill', inplace=True) | |
| sj_test = df_test.loc['sj'] | |
| iq_test = df_test.loc['iq'] | |
| sj_test = sj_test[features_sj] | |
| iq_test = iq_test[features_iq] | |
| df_labels = pd.read_csv('Data/lag_dengue_labels_train.csv', index_col=[0, 1, 2]) | |
| sj_labels = df_labels.loc['sj'] | |
| iq_labels = df_labels.loc['iq'] | |
| print("\n Testing models \n") | |
| alphas =[0.1,0.01,0.001,0.0001,0.00001,0.000001,0.0000001,0.00000001] | |
| bestScore_sj =1000 | |
| bestScore_iq =1000 | |
| bestAlpha_sj =0.1 | |
| bestAlpha_iq =0.1 | |
| for alpha in alphas: | |
| sj_score = evaluate(sj.join(sj_labels),features_sj,alpha) | |
| if(sj_score<bestScore_sj): | |
| bestScore_sj = sj_score | |
| bestAlpha_sj = alpha | |
| iq_score = evaluate(iq.join(iq_labels),features_iq,alpha) | |
| if(iq_score<bestScore_iq): | |
| bestScore_iq = iq_score | |
| bestAlpha_iq = alpha | |
| print("Best Alpha Values \n") | |
| print (bestAlpha_sj) | |
| print (bestAlpha_iq) | |
| print("Best Score Values \n") | |
| print (bestScore_sj) | |
| print (bestScore_iq) | |
| model_sj = linear_model.Lasso(alpha=bestAlpha_sj) | |
| model_iq = linear_model.Lasso(alpha=bestAlpha_iq) | |
| model_sj.fit(sj.values,sj_labels.total_cases) | |
| model_iq.fit(iq.values,iq_labels.total_cases) | |
| results_sj = model_sj.predict(sj_test) | |
| results_iq = model_iq.predict(iq_test) | |
| results= np.concatenate([results_sj, results_iq]) | |
| results =[int(round(i)) for i in results] | |
| results =[0 if(i<0) else i for i in results] | |
| submission = pd.read_csv("Data/submission_format.csv",index_col=[0, 1, 2]) | |
| submission.total_cases = results | |
| submission.to_csv("scikit-new_data-lasso.csv") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment